Here I collect a bunch of August 2015 notes. I now have a small OTW code (parang.sh) that does the job.
Most of this from the parang source code directories. A fairly clear definition: ========================== The parallactic angle is the angle between the great circle through a celestial object and the zenith, and the hour circle of the object. It is usually denoted q. In the triangle zenith—object—celestial pole, the parallactic angle will be the angle at the celestial object. I good web calculator is at: http://irtfweb.ifa.hawaii.edu/cgi-bin/spex/parangle.cgi I can set for APO (Apache Point, close to McD's latitude) I specify HA (- for East, + for West) I specify DEC -----> These last two let me move to different AZIMUTH values Q = parallactic angle Here is what it gives: HA DEC Q ~AZ(sco) 0.0 0.0 0.0 180 0.0 -5.0 0.0 180 -4.0 0.0 126.6 90 -3.0 0.0 132.0 90 -0.1 0.0 3.9 180 -4.0 +60.0 82.0 60 -1.0 -30.0 163.0 170 -0.2 -30.0 2.4 180 It seems that the HET parallactic angle is NOT a parallactic angle at all. It is the direction of the parallactic vector, and is defined on an angular scale that runs from 0 to 360 degrees. I belive it is the vector that "tells you", from the prespective of the target being observed, the direction to the Zenith point. Why does my Q value (a direction, not an angle!) not agree with the HET equations (or with Figure 3 in Wray #42)? Azimuth,Expected,Computed: 65.4525 90.0 71.96599 I should get 90 but my code predicts 72. I will go through each step in code (already printed to log file) and check the calculations by hand. I will illustrte the steps using JFs equations: c Here is how the Tcs calculates paralactic angle. Telecentric c azimuth is the structure azimuth (AZ) and telecentric elevation c (telangle) is basically 55 degrees. Our latitude is 30:40:53.17 c Intermediate variables. c P = cos( Telecentric Elevation ) * cos( Latitude ) c Q = sin( Telecentric Elevation ) * sin( Latitude ) c These parameters are dependent only on the Az/El of the c telecentric axis. c Tde: Telecentric Declination c H0: Telecentric Hour Angle c Tde = asin( P * cos( Telecentric Azimuth ) + Q ) c H0 = asin( -cos( Telecentric Elevation ) * sin( Telecentric Azimuth ) / cos( Tde ) ) c Q = Pa_Paralactic_Angle = acos( cos( H0 ) * cos( Telecentric Azimuth ) c + sin( H0 ) * sin( Telecentric Azimuth ) * sin( Latitude ) ) Numbers my code uses: Q = 0.417863 P = 0.493336 telangle = 55.0 xlatitude = 30.6716667 For my, I start at AZ=65.45 My first cal: tde Tde = asin( P * cos( Telecentric Azimuth ) + Q ) Tde = asin ( 0.493336 * cos(65.45) + 0.417863) Tde = asin ( 0.493336 * 0.41549 + 0.417863) Tde = asin ( 0.20497 + 0.417863 ) Tde = asin ( 0.62284 ) Tde = 38.5238 degrees (My code tde = 38.52223) Next, I calc H0 = angle between tele-axis and meridian c H0 = asin(-cos( 55 ) * sin( 65.45 ) / cos( tde ) ) ------------------------- ---------- arg2 arg3 --------------------------------------- arg4 arg2 = -cos( 55 ) * sin( 65.45 ) = -0.57358 * 0.90960 = -0.52173 My code: arg2 = -0.52174 arg3 = cos( tde ) = cos( 38.5238 ) = 0.78245 My code: arg3 = 0.78237 agr4 = arg2 / arg3 = -0.52174 / 0.78237 = -0.66687 My code: arg4 = -0.66687 H0 = asin( arg4 ) = asin( -0.66687 ) = -41.82595 deg My code: H0 = -41.82578 Finally we get tp Pallactic Angle = PA PA = Pa_Paralactic_Angle Lat = 30.6716667 PA = acos [ cos(H0)*cos(AZ) + sin(H0)*sin(AZ)*sin(Lat) ] -------------- ------------------------ arg10 arg11 arg10 = cos(H0)*cos(AZ) = cos(-41.82578) * cos(65.45) = 0.74518 * 0.41549 = 0.30961 My code: arg10 = 0.30958 arg11 = Here was the typo!!!!!! But I am so close, I'll finish the full sample calculation. arg11 = sin(H0)*sin(AZ)*sin(Lat) = sin(-41.82578) * sin(65.45) * sin(30.67166) = -0.66687 * 0.90960 * 0.51012 = -0.30943 My code: arg11 = -0.30943 PA = acos ( arg10 + arg11 ) = acos ( 0.30958 - 0.30943 ) = acos ( 0.00015 ) PA = 89.9914 My code: PA = 89.99158 Also, I did a bunch of other cases: (See: parangle/T/S1_handcals/RUN_HAND) PA = Parallactic Angle Azimuth Expected_PA Computed_PA 31.7 49.48 55.82590 311.07117 284.8037 284.71555 68.58792 92.5072 92.52967 65.4525 90.0 89.99158 0.0000 0.0 0.00000 180.0000 180.0 180.00000 65.4525 270.0 270.00842 parangle/Notes_parangle/README.parangle From Matt (02/20/2015) =========================================================================== So it should be a constant offset between the parallactic angle and the position angle not a constant offset between the Az and position angle. There is some web code that computes this: /home/het/astronomer/HETweb_Programs/Instruments rho.c: #define R2D 57.29577958 /* degrees per radian */ #define Q 0.417863 /* sin alt * sin latitude */ Not alt! #define P 0.493336 /* cos alt * cos latitude */ Not alt! #define telangle 55.0 #define latitude 30.6716667 The explanations of Q,P above are INCORRECT They should read: #define Q 0.417863 /* sin telangle * sin latitude */ 0.81915 * 0.51012 = 0.417864 #define P 0.493336 /* cos telangle * cos latitude */ 0.57358 * 0.860105 = 0.493339 DEC2 = DEC2/R2D; az = 1/P*(sin(DEC2)-Q); tde = P*cos(az/R2D) + Q ; tde = atan2(tde,sqrt(1-tde*tde)) * R2D; h = (cos(telangle/R2D)*sin(az/R2D))/-cos(tde/R2D); h = atan2(h,sqrt(1-h*h))*R2D; parang=cos(h/R2D)*cos(az/R2D)+sin(h/R2D)*sin(az/R2D)*sin(latitude/R2D); parang = atan2(sqrt(1-parang*parang),parang)*R2D; Then if you are working in the West you have to do a 360-parang =========================================================================== From Jim (02/04/2015) =========================================================================== Steve, Here is how the Tcs calculates paralactic angle. Telecentric azimuth is the structure azimuth and telecentric elevation is basically 55 degrees. Our latitude is 30:40:53.17 Intermediate variables. P = cos( Telecentric Elevation ) * cos( Latitude ) Q = sin( Telecentric Elevation ) * sin( Latitude ) These parameters are dependent only on the Az/El of the telecentric axis. Tde: Telecentric Declination H0: Telecentric Hour Angle Tde = asin( P * cos( Telecentric Azimuth ) + Q ) H0 = asin(-cos( Telecentric Elevation ) * sin( Telecentric Azimuth ) / cos( Tde ) ) Pa Paralactic Angle = acos( cos( H0 ) * cos( Telecentric Azimuth ) + sin( H0 ) * sin( Telecentric Azimuth ) * sin( Latitude ) ) Best wishes, Jim ===========================================================================