The np.nanmean (and other) functions are REALLY useful. I should put this into table_stats!
This code: /home/sco/NumPy/nanmean_play.py #!/usr/bin/env python import numpy as np #======================================================= # I read the text lines directly into a numpy array b = np.loadtxt('test_tab.txt', dtype=float) print "\nHere is my loaded numpy array (named b):\n", print b print "Type of b = %s \n" % ( type(b) ), print "b.dtype = ", b.dtype print "b.shape = ", b.shape print "b.ndim = ", b.ndim print "b.size = ", b.size #======================================================= cvalue = np.nanmean(b) cval = np.nanmin(b) print "Mean of b using mean = %8.3f \n" % ( b.mean() ), print "Mean of b using nanmean = %8.3f \n" % ( cvalue ) print "Min of b using nanmin = %8.3f \n" % ( cval ) The run: % cat test_tab.txt % cat test_tab.txt 1.0 2.0 3.0 1.0 2.0 nan % python nanmean_play.py % python nanmean_play.py Here is my loaded numpy array (named b): [[ 1. 2. 3.] [ 1. 2. nan]] Type of b =This is so cool!b.dtype = float64 b.shape = (2, 3) b.ndim = 2 b.size = 6 Mean of b using mean = nan Mean of b using nanmean = 1.800 # This is correct! Min of b using nanmin = 1.000 # This is correct!