LTL
2.0.x
|
Classes | |
struct | blas_gbmv_dispatch< T > |
struct | blas_gbmv_dispatch< double > |
struct | blas_gbmv_dispatch< float > |
Functions | |
template<typename T > | |
void | blas_symv (const T alpha, const MArray< T, 2 > &A, const MArray< T, 1 > &x, const T beta, MArray< T, 2 > &y) |
template<typename T > | |
MArray< T, 1 > | blas_symv (const MArray< T, 2 > &A, const MArray< T, 1 > &x) |
template<typename T > | |
MArray< T, 1 > | blas_gbmv (const MArray< T, 2 > &A, const MArray< T, 1 > &x, const int M, const int ku, const int kl, const bool transA) |
template<typename T > | |
blas_dot_dispatch< T >::value_type | blas_dot (const MArray< T, 1 > &x, const MArray< T, 1 > &y) |
template<typename T > | |
void | blas_axpy (const MArray< T, 1 > &x, const T alpha, MArray< T, 1 > &y) |
template<typename T > | |
void | blas_gemv (const T alpha, const MArray< T, 2 > &A, const MArray< T, 1 > &x, const T beta, MArray< T, 1 > &y, const bool transA=false) |
template<typename T > | |
MArray< T, 1 > | blas_gemv (const MArray< T, 2 > &A, const MArray< T, 1 > &x, const bool transA=false) |
template<typename T > | |
void | blas_gemm (const T alpha, const MArray< T, 2 > &A, const MArray< T, 2 > &B, const T beta, MArray< T, 2 > &C, const bool transA=false, const bool transB=false) |
void blas_gemv | ( | const T | alpha, |
const MArray< T, 2 > & | A, | ||
const MArray< T, 1 > & | x, | ||
const T | beta, | ||
MArray< T, 1 > & | y, | ||
const bool | transA = false |
||
) |
The Xgemv()
routine compute a matrix-vector product for of either a general matrix or its transpose: y = alpha*Ax + beta*y y = alpha*transp(A)*x + beta*y
The MArrays
x and y may have strides unequal 1, hence they may be views, slices, or subarrays of higher-dimensional MArrays
. The matrix A
needs to have contiguous storage.
The vector y is overwritted with the result of the calculation. If transA==false, the length of y has to be M, otherwise N.
MArray<T,1> blas_gemv | ( | const MArray< T, 2 > & | A, |
const MArray< T, 1 > & | x, | ||
const bool | transA = false |
||
) |
The Xgemv()
routine compute a matrix-vector product for double-precision data of either a general matrix or its transpose: y = Ax y = transp(A)*x
The MArrays
x may have strides unequal 1, hence it may be a view, slice, or subarray of a higher-dimensional MArray
The matrix A
needs to have contiguous storage.
The result of the calculation is returned in a newly allocated MArray
.
void blas_symv | ( | const T | alpha, |
const MArray< T, 2 > & | A, | ||
const MArray< T, 1 > & | x, | ||
const T | beta, | ||
MArray< T, 2 > & | y | ||
) |
The Xsymv()
routine compute a matrix-vector product for of a symmetric or hermitian matrix: y = alpha*Ax + beta*y
The MArrays
x and y may have strides unequal 1, hence they may be views, slices, or subarrays of higher-dimensional MArrays
. The matrix A
needs to have contiguous storage.
The vector y is overwritted with the result of the calculation.
MArray<T,1> blas_symv | ( | const MArray< T, 2 > & | A, |
const MArray< T, 1 > & | x | ||
) |
The Xsymv()
routine compute a matrix-vector product for double-precision data of either a general matrix or its transpose: y = Ax
The MArrays
x may have strides unequal 1, hence it may be a view, slice, or subarray of a higher-dimensional MArray
The matrix A
needs to have contiguous storage.
The result of the calculation is returned in a newly allocated MArray
.
MArray<T,1> blas_gbmv | ( | const MArray< T, 2 > & | A, |
const MArray< T, 1 > & | x, | ||
const int | M, | ||
const int | ku, | ||
const int | kl, | ||
const bool | transA | ||
) |
The Xgbmv()
routine compute a matrix-vector product for single or double-precision data of either a general banded matrix or its transpose: y = Ax
The MArrays
x may have strides unequal 1, hence it may be a view, slice, or subarray of a higher-dimensional MArray
The matrix A
needs to have contiguous storage.
The result of the calculation is returned in a newly allocated MArray
.
References blas_gbmv_dispatch< T >::call().