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Sample of Massive Galaxies from GOODS-NICMOS Survey (GNS)

GNS = 180 orbits of HST NIC3/H-band imaging (PI: Conselice+2011) .

While ACS surveys trace rest-frame-UV light at z>1, GNS provides rest-frame optical
images for massive galaxies at z=1-3. This is critical for studying galaxy structure

GNS has 60 deep (5c limiting mag H = 28 AB) pointings chosen to include known
massive galaxies at z=1.5-3 with a wide range of properties from old to star-forming

- Distant Red Galaxies (DRG; Papovich+06) : J-K>3 ( Vega); old
- Extremely Red Objects (EROs; Yan+04) =red (old or dusty)
- BzK (Daddi+04): star-forming and evolved

GNS sample includes all galaxies in the area mapped, with
a reliable M- and photometric redshift (Conselice + 11)
Complete at z~3 down to M-/M. 3x10° (Mortlock+10),.

Final sample of massive galaxies (M./My>=5 x1070) at z=
3 galaxies is one of the largest samples at with deep high
resolution (0.3") rest-frame optical imaging:

166 with M./My> =5 x10'° , 73 with M-/My> =1 x10"
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Structural Decomposition

Fit single-component Sersic models to rest-frame B (NIC3/H) images of massive
z~2-3 galaxies after convolving with PSF (0.3%)

1 /n . .
R re = half-light radius
I(r) = L. exp { —b[<RT(> - 1] } n =Sersic index
10' | — ::?—‘
— n=2
n=3
—— n=4

* n=1 for Exponential (pure disk)
* n=4 for de Vaucouleurs (classical bulge/E)
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Rest-Frame Optical Structure of Massive Galaxies at z~2-3
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At z=2-3, among our 77 massive (M./My> =5 x10'9) galaxies:

- Most (65%) have extended (R.>2 kpc), flattened/disky (n<2) morphologies
- 40% are ultra-compact (Re<2 kpc)

- Asmall fraction (<15 \%) have strong visible distortions



Rest-Frame Optical Structure of massive galaxies at z=2-3 vs z~0
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(Weinzirl, Jogee,Conselice et al. 2011, ApJ, 743)




Is the difference between massive galaxies at z~2-3 vs z~0 real
or

is it driven by redshift-dependent systematic effects
(cosmological surface brightness dimming, loss of resolution) ?




Recovered n at z=2.5

2.5 (kpc)

Recovered r, at =

Artificial redshifting of z~0 massive galaxies to z~2.5

Massive E/SOs (5 x10' M <M, <1 x10" M)
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Massive spirals (5 x10'° M <M, <1 x10™ M)
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(Weinzirl, Jogee,Conselice et al. 2011, ApJ, 743)

Artificial redshifting of z~0
massive E/SO, and intermediate
B/T spirals out to z~2.5 does not
move them into the shaded
grey area where most the
observed z~2.5 ultra-compact
(Re<2kpc) and n<2 sysyems lie

- Difference in rest-frame
optical structure between z=2~3
and z~0 is real



Artificial redshifting of z~0 massive galaxies to z~2.5
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(Weinzirl, Jogee,Conselice et al. 2011, ApJ, 743)



Can we assume that massive galaxies with (large R,, low n<2)

at z~2-3 represent disk-dominated systems rather than
classical Ellipticals?




1) Could these massive galaxies at z~2-3 with Massive E/SOs (5 x10° M _ <M, <1 x10'2 M)

n<2 be classical n~4 Ellipticals whose J——— —
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3) For extended massive galaxies where bulge+disk decomposition is
possible, B/T<0.5 and bulges are mainly pseudobulges with n<2



4) Distribution of projected ellipticity for massive galaxies with n<2 is more similar
to that of massive spirals than Es (also van der Wel+2011 for 14 galaxies)
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5) Distribution of intrinsic ellipticity suggests n<2 systems are highly flattened
unlike spheroids Es

KS Test
L ) B S B B S B =
/ 1) Randomly incline oblate galaxies
0.8 - a of intrinsic axial ratio b/a to generate
- r . F1(q1), CDF of projected axial ratios
( |
06 i " ) 2) D = max. separation D between
al | | F1(q1) and the CDF of observed axial
a / l ratios for n<3 or n>3 systems
_-\/‘\/\‘\/\/"Iz/—i—»i ,)'Il |
4 NS/ r i For n<3 sample
N haVi - b/a~0.35 or e~0.65
A \ ) Highly flattened unlike Es
: _ Possibly thick disks
ol v v v For n>3 sample
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(Courtesy: A. Burkert)



Star Formation Rates in Massive Galaxies at z=2-3

SFR are estimated in two ways
1) From LIR (8-1000 um) derived via SED fits to Spitzer 24 um data. Overestimates SFR for AGN

2) From extinction-corrected rest-frame UV luminosity (Bauer+2011)

10% ' J
e > 2 kpC
re < 2 kpe z2=2-3
z ~ 2 (Daddi+07, SFRyy ext. corr)
_
~—
= —_
\ -—;-‘
= =
— \:‘
2 g
E OF a2 AGN (=23
(D - . ® Non-AGN (z=2-3)
il " . s + :~2(Daddi et al. 2007)
10%F 100 105 110 115 120
[ log,, M/M
o. Im l l
100k - - L

1010 "' T 02
Galaxy M., /M.

At z~2-3, SFR ranges from a few to several 100 M, yr-' (versus several M, yr' at z~0)
The ultra-compact galaxies have the tail of lowest SFR or are undetected, while the

extended disky systems have the highest SFRs



AGN in Massive Galaxies at z~2-3

« AGN identified mainly via X-ray properties (L,,G), and some from IR power-law
SEDs (Donely+08) , IR-to-optical excess (Fiore+08)

At z~2-3, 40% (31/77) of massive galaxies host a AGN

« The 20 AGN with X-ray detection are low luminosity Seyfert-type systems
L, =few x 10*2 to 10* erg s
Lo = few x 108 to 10% erg s (for Ly, /L, ~20; Vasudevan & Fabian 2009)
Mass Accretion rate < 1 M yr' (for e=0.1)
(Complementary to high luminosity AGN --- Donley’s talk]

* Number density

Low Luminosity AGN at z~2-3: 2 x 104 Mpc-3

SMG at z-2-3: 2 x 10 Mpc3

QSO at z~-2-3: ~10® Mpc3

High-z radio galaxies ~few times 108 Mpc”-3



Morphology of (Low-Luminosity) AGN hosts at z=2-3
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Most (65%) of AGN hosts are disky extended galaxies (just like the general population)

AGN hosts are ~3 times less likely than non-AGN to be ultra-compact (this is likely caused
by the fact that many UC are undetected in SFR, gas starved and ‘dead’,)



Only a small fraction of AGN & Non-AGN show visibly strong distortions

gns5427

AGN

Both AGN and non-AGN hosts have a
comparably low fraction (<15%) of
strong visible morphological distortions

However even best current datasets do not have resolution and
sensitivity to detect late stages of major merger or minor mergers



Can we detect major & minor mergers with deep NIC3 data?

Artificially redshift rest-frame B light of mergers from z=0 to z=2.5 and re-observe
with NIC3/F160W to depth of GNS survey.

z~ 0, rest-frame B z~ 0, rest-frame B* z~ 0, rest-frame B

Major mergers

| "‘3 " | z=0, rest-frame B

v
z=2.5, rest-frame B (NIC3/F160W)

z~ 0, rest-frame B

| Minor mergers
.

z=0, rest-frame B

7025, N|3, rest-frame B

z=2.5, rest-frame B (NIC3/F160W)

gns2965




Why are large-scale properties of AGN and non-AGN at z~2-3 similar?

ISOLATED OR WEAKLY MAJOR MERGER OF
INTERACTING SPIRAL TWO DISKS
R~5000
L~5x10%° Early Merger Stage
X
Gravitational torque from Hydrodynamical torque
a spontaneously or tidally (shocks) in initial collision
induced large-scale bar Gravitational torque from
induced large-secale bars
dominate
Y
R~500
28 Gravitational torque from Late Merger Stage
L~5x10 nested nuclear bar(s) Rapidly varying gravitational
ccal fricti torque. Gas on crossing orbits
Dynamic iction strongly shocked
Sk feedback Dynamical friction
Nuclear spiral (shocks) SF feedback
R~10 v
L~10%°
Runavway self-gravitational instabilities
Tidal disruption of clumps by BH
Viscous torques
1
1 Hydromagnetic wind (pc and sub-pe scale)
1
Rygsc~ 3Mg x 107
L~ 2Mg x 10%4

In order to feed gas from tens of kpc down to
an AGN, transport mechanisms on different
scales must remove over 99% of its angular
momentum

The AGN at z~2-3 have low estimated gas
accretion rate dM/dt <= 1M, yr'. The implied
accreted gas mass (< 108 Mo ) over a duty
cycle is much less than the typical gas content
in inner kpc of most massive galaxies (except
in some gas-starved ultra-compact galaxies).

Thus. the AGN activity can be triggered by
circumnuclear gas transport mechansims (e.g.,
dynamical friction on clumps, nuclear bars,
shocks)

Large-scale transport or fueling mechanisms
(e.g, mergers, large-scale bars) are not
necessary conditions to fuel the AGN (but can
grow the galaxy as a whole

(Jogee 2006, Ch6, AGN Physics on All Scales; astro-ph/0408383 )



How did the massive galaxies at z~2 form ?

Most massive galaxies at z~-2-3 have high mass surface density and disky
morphologies.This implies they form through rapid gas-rich dissipative processes

1) Gas-rich (fgs> 50%) major mergers
builds disky remnants (Sersic n~2-3)

rather than classical bulges/E (e.g.,
Robertson+06; Hopkins+09; Naab+09)

- but hard to make 60% of galaxies disky

2) Cold accretion builds disks at z>2
(e.g., Keres+05; Khochfar & Silk 09;
Dekel+09; Brooks+09; Oser+Naab+12;
Burkert+10)

Courtesy: A. Dekel & R. Teyssier
(200 Mpc, z=5to 2)



Relation between BH and Bulge Mass at z~2-37?
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For a subset of AGN hosts (extended) at z~2-3, B+D decomposition is possible
We assume L, L.qq=0.1 to get above ballpark plots (factors of several uncertainty)

LHS plot: Low lum AGN at z~2-3 show no tight BH-bulge correlation. They are more similar to
z~0 pseudobulges than z~O0 classical bulges

RHS plot: Low lum AGN at z~2-3 vs rarer z-2 luminous QSO0s, Radio Galaxies from KH13



How will the massive galaxies (and their BH) evolve from z~2 toz~0?
M, > 5 x 10" M.
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Due to their already high mass, most massive (M./My> = 5 x10'°%) galaxies at z=2-3 can only
evolve into E/SO and Sabc by z~O.

This evolution requires a rise in the size (R;) by a factor of 3-5 and a rise in Sersic index n

The observed mass density profile at z~2-3 suggest growth is needed in outer parts of galaxy



How will the massive galaxies (and their BH) evolve from z~2 to z~07?

Two main mechanisms to raise (size R, and Sersic index n) from z~2.5 to z~0:

1) Moderately gas-poor major mergers: Convert disks into classical E/bulges with n~4

2) Minor mergers: Accreted stripped stars grows outer parts of galaxy and raise size
more effectively than major mergers (Naab+09;Bezanson+09; Oser+12).

(Oser & Naab +12)
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Open Questlon: Can these minor mergers and major mergers correctly transform the overall
galaxy structure from z~2.5 to z~0, while evolving the AGN in the BH-bulge plane such that
some move closer to the z~0 BH-classical bulge relation?



Simulations severely underproduce extended massive galaxies

Many cosmological simulations still strongly underproduce the fraction of massive
extended (disky) galaxies at z~2-3 and over-produce compact galaxies e.g.
Oser+12, Ceverino, Dekel et al in prep.)
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Above: 40 high res. cosmological re-simulations of galaxies with M= 510 to 4e11 M,

(Oser + Naab 2012). Include early phase at 2 <z<6 of rapid in-situ SF from gas accretion
(cold streams + halo))



Summary:Massive Disks and their Activity at z~2-3

1) Massive galaxies (M,M,>5x1019) have different rest-frame optical structure at z~2-3 vs z~0:
- 40% are ultra-compact (R.< 2 kpc) versus <1% at z~0
- 65% have flattened/disky (n <2) morphologies versus only 20% at z~0

2) At z~2-3, 40% (31/77) of massive galaxies host an AGN .The 20 X-ray-detected AGN are low
luminosity Seyfert-like (Lyo~ few x 10%4-104° erg s''). Most AGN hosts are disky galaxies.

3) At z~2-3, AGN hosts are 3 x less likely than non-AGN to be ultra-compact (gas-starvation).
Otherwise, AGN and non-AGN hosts show similar global properties: SFR, cold gas fraction
and a low fraction (<15%) of strong visible morphological distortions.

Low-luminosity low gas accretion rate (<= 1M, yr'¥) AGN in typical gas-rich circumnuclear
region require circumnuclear gas transport mechansims (e.g., DF on clumps, nuclear bars)
Large-scale trransport mechanisms (e.g, mergers, bars) are not necessary to fuel the AGN

4) For AGN at 2-3 where B+D decomposition is possible, if we assume Ly /Legq=0.1
AGN show no tight BH-bulge correlation and are similar to z~0 pseudobulges



