<u>Galaxy Evolution : Emerging</u> <u>Insights and Future Challenges</u>

Shardha Jogee

University of Texas (UT) Austin

F. Barazza, I. Marinova, A. Heiderman T. Weinzirl, S. Miller, K. Penner
GEMS, GOODS, STAGES, COMA collaborations
H.-W Rix, C. Wolf, M. Barden, E. Bell, D. McIntosh, C. Peng, R. Somerville, S. V. W Beckwith, M. Gray, D. Carter, I. Shlosman, C. Conselice, C. Papovich (SpitzerGTO)

Present –day Hubble sequence

- à Ellipticals
- à Barred and unbarred disks (e.g., Sa– Sd)
- à Irreguliar, Peculiar/Interacting

<u>**ACDM models**</u>

 Λ CDM models = good paradigm for how structure and DM evolves on large scales

(Springel et al. 2005)

Millenium Run : 10¹⁰ particles Follows DM in region D=15 Mpc/h Resolution = 5 kpc/h

<u>ACDM models</u>

Model predictions for the evolution of galaxies depends on

* Dynamic range and spatial resolution Simulations of large-scale environment cannot resolve galaxy components (bulge, bar, disk) [N=10^{10,} D=500Mpc/h, Resolution~5kpc/h]

* Halo occupation statistics

* Assumed baryonic physics

Phase of ISM, star formation, feedback Mechanisms to redistribute ang. momentum (merger, bars, dynamical friction)

Hierarchical origin of galaxy structure

In CDM + baryonic fluid, overdensities on small mass scales collapse first Baryons radiate and decouple from DM halo

(Steinmetz & Navarro 2002) Old stars=red Young stars=blue Green=gas

Disks build up from episodes of smooth gas accretion Disk of gas and stars in place (M ~3e10, D~3 kpc), ongoing star formation

Major merger of two disks + SF à Violent relaxation à $R^{1/4}$ stellar bulge.

Hierarchical origin of galaxy structure

Smooth accretion of high ang momentum gas; young disk builds around an old classical bulge.

Accretion of discrete satellites --> tidal triggering of bar. Bar persists till next major merger.

Major merger of 2 spirals à central starburst ; violent relaxation forming triaxial Elliptical

Hierarchical origin of galaxy structure

z: 49.5

Left = face on Right = side on

(Steinmetz & Navarro 2002)

Challenges for ACDM models

- à No unique predictions for galaxy evolutionf (baryonic physics, resolution)
- à Substructure or missing satellite problem
- à . Angular momentum problem
- à Bulgeless galaxy problem

Empirical Approach

Rely on observations

- à to map history of mergers, SF, and structural assembly as f(epoch, environment)
- à constrain baryonic physics input in models
- 1) Sloan Digitized Sky Survey (SDSS) over z~0.01 to 0.4

<u>Empirical Approach</u>

Surveys as function (epoch) + environment= (field,group,cluster)

GEMS (Rix et al 2004) $z \sim 0.2$ to 1.0GOODS (Giavalisco et al 2004) $z \sim 0.2$ to 5.0AEGIS/DEEP2 (Davis et al 2003/2007, Faber et al 2006) $z \sim 0.2$ to 1COSMOS (Scoville et al 2007)out to $z \sim 1$ Hubble Ultra Deep Field (HUDF; Beckwith et al 2006) $z \sim 8$

ACS Virgo survey (Cote et al 2004) ACS Treasury Survey of Coma Cluster (Carter et al 2008) z~0.025 STAGES A901/902 Supercluster (Gray et al 2008) z~0.17

NICMOS imaging of GOODS (Conselice/Bouwens et al; ongoing)

GEMS (Galaxy Evolution from Morphology and SEDS)

Large area 2-filter imaging survey w/ HST (Rix et al 2004)

Area : 30'x30' = 120 x HDF = 78 x HUDF = 5 x GOODS-S Filters : F606W (V) , F850LP (z) (26.8, 25.7 AB mag)

Central mosaic (1 orbit) shared with GOODS (Giavalisco et al 2004)

Accurate z from COMBO-17 (Wolf et al. 2004) [δz/(1+z)] ~ 0.02 (R<24 Vega z=0.2-1.0)

à ACS: Trace rest-frame optical structure of 8200 galaxies out to $z\sim1$ (T_b~8 Gyr)

à Spitzer, Chandra, GALEX, Ground-based spectroscopy

Example of galaxies over z=0.7-1.0 ($T_{back} \sim 6-8$ Gyr) ACS data + catalogs are publicly available on MAST archive

STAGES: Space Telescope survey of A901/902 supercluster

STAGES: Space Telescope survey of A901/902 supercluster

(From Heiderman, Jogee & STAGES 2008, in prep)

Data release planned for end of Feb 2008 (Gray et al 08).

ACS Treasury Survey of the Coma cluster

ACS survey (Carter et al 2008) 164 orbits; 1/3 done at ACS failure F814W (I=251); F475W (B=27.3)

Complementary: GALEX, Spitzer, XMM Chandra, Radio

ACS data release planned for summer 2008

ACS Treasury Survey of the Coma cluster

Courtesy: Z. Levay (STScI) NASA, ESA, Coma ACS Treasury Team

ACS Treasury Survey of the Coma cluster

Courtesy: Z. Levay (STScI) NASA, ESA, Coma ACS Treasury Team

Some Science Themes

- Merger history
- Star Formation History
- Structural Assembly and the Problem of Bulgeless Galaxies
- [Galaxy evolution as a function of environment (field, group clusters)]

<u>Merger history</u>

<u>Merger fraction at high z</u>

<u>What drives decline in cosmic SFR density over z =1 to 0</u>

(Harsma et al. 2000)

Decline in merger rate

Decline in cold gas content due to gas consumption/removal by SF/AGN Decline in accretion rate from filaments

<u>Mergers and SF history out to z~0.8 (last 7 Gyr)</u>

(Jogee et al 2007, 2008)

Ingredients

- 4500 galaxies (R<24) over z=0.24 to 0.80 (T_{back} ~3 to 7 Gyr)
- ACS F606W high resolution images from GEMS survey (Rix et al 2004)
- Stellar masses from Combo-17 (Borch et al 2006)
- UV and IR-based SFR from Combo-17 & Spitzer (Bell et al 2007)

Classification of galaxies (visual and quantitative CAS code)

Relatively symmetric galaxies = normal = (E+S0+Sa, Sb-Sc, Sd)

Irregular-1 galaxies

Strongly Distorted Interacting/Merging galaxies

Separate internally vs externally triggered asymmetries

Strongly Distorted

Galaxies with asymmetries which cannot be spontaneously induced in an isolated galaxies and require a strong external trigger, typically an interaction of mass ratio 1:1 to 1:10

e.g., tidal tails, warps, shells, strongly asymmetric arms,double nuclei, galaxies bounded by a common body or bridge

Irregular-1

Galaxies with asymmetries that can be internally triggered without any galaxy-galaxy interactions.

e.g., asymmetries due to stochastic SF or low V/ σ in low mass galaxies

EXPLORATORY STEP Use stellar masses and photz, and morphologies to set a lower limit on the major merger fraction

Major merger/interaction (M1/M2<1:4) Minor merger/interaction (1:4 to 1:10) Either

Example of normal undisturbed (E+S0+Sa, Sb-Sc, Sd–Irr1)

Example of strongly disturbed/interacting (Dist/Int)

2 at similar z

Example of strongly disturbed/interacting (Dist/Int)

Total No of galaxies = 4524Each bin = 1 Gyr

Hubble types coded

- Strongly disturbed=orange
- Normal = Sb-Sc (blue circle), Sd-Irr (blue cross)
 Sa (green), E+S0 (black)

Red sequence complete at high $(M/M_0 \ge 2.5 \times 10^{10})$

Blue cloud complete at $M/M_0 > 1.0 \times 10^9$

Merger fraction

Observed fraction F strongly distorted merging /interacting galaxies ~9% -12% over z~0.2 to 0.8

Merger rate = F n /Tvis ~ few x 10⁻⁴ Mpc-3 Gyr-1

Agree within a factor less than 2 w/ Lotz et al (2008; AEGIS)

Jogee et al 2008a

Compare fraction of strongly disturbed systems with models

Merger fraction predicted by models

Major (<1:4) Minor (1:4 to 1:10)

LCDM SAM: H H = Hopkins et al 2007 ; S S = Somerville et al in prep; B B = Benson et al 2005

LCDM Hydro : M = Maller et al 2006 TBA = Millenium simulations

Model (major + minor)
 fraction consistent w/ data
 within a factor of 2

Comparison of merger rates in data vs models

Figure 2. Total merger rate (major+minor) (solid line) and major merger rate only (dotted line) of dark matter haloes, per unit volume (comoving), as a function of redshift, derived from cosmological simulations. The merger rate derived from GEMS data is also displayed (filled circles, Jogee, private communication) and from *HDF* of Conselice (2003, open squares). The rate per unit volume of the flybies of dark halos is plotted for comparison (dashed line).

> (D'onghea et al. 2008) 1e13 particles

(Jogee et al 2008a)

Different number density as f(M) in models. Different mass function for models w/ and w/o AGN feedback?

Tests on systematic effects

Tests on visual classes of normal galaxies

Testing effect of bandpass shift (3480 A to 5300 A) in z=0.6 to0.8

Test impact of bandpass shift (3480 A to 5300 A) in z=0.6 to0.8

F606W

F850LP

F606W

F850LP

Tests using quantitative CAS merger criterion (A>S and A>0.35)

CAS Recovery Rate =50% CAS contamination by normal

Impact of Mergers/interactions on Star Formation

Enhancement of SFE during mergers

Star formation efficiency during simulations of major merger depends on

Physical properties : Assumptions:

Orbital parameters Model of star formation Model for stellar feedback or [AGN feedback]

Gas fraction, B/D Treatment of the ISM

Higher SFR during major megers with lower feedback (n~0) model (Cox et al 2006)

Total No of galaxies = 4524

SFR_{UV} ~mainly 0.1--5 M_o yr⁻¹

SFR_{UV+IR} ~mainly 0.5- 20 M_o yr⁻¹ for 900 galaxies with both Spitzer and UV data

Extinction correction factor ~3-4

Jogee et al 2008b

Average SFR in Interacting vs Normal galaxies

Average SFR of strong/y disturbed galaxies is enhanced only by a factor of a few w.r.t that of normal undisturbed galaxies

Di Matteo, P. et al. 2007

Statistical study of several hundred TREE-SPH simulations of major mergers of different B/D, gas, orbital parameters, etc

Max SFR of most mergers compared to isolated case is only enhanced by ~2 to 3, not factor of 10-20

Specific SFR vs Mass : the fractional growth of galaxies

Only modest enhancement in SSFR of Dist/Int vs normal galaxies

Larger fractional growth in low mass than high mass galaxies at z<1 ("downsizing")

à See Noeske et al al (2007) : SFR as f(M) and proposal of staged SF model

Madau plot : SFR density in normal vs interacting galaxies

Cosmic SFR density over z=0.2 to 0.8 is dominated by undisturbed galaxies (Sb-Sc, E+S0+Sa), while strongly disturbed/interacting galaxies contribute only 20 to 35%

Similar results at z~0.7: Wolf et al (2005), Bell et al (2005); Noeske et al (2007)

Models predict ~20% out to z<2 (Hopkins et al 2005)

Results hold even if Sd-Irr are contaminated since (Sb+Sc+E+S0+Sa) > (Sd-Irr) + (Dist/Int)

Similar qualitative results using CAS method

Future steps

Next: push studies in rest frame B or NIR (1 mu) to z>1

2) Ground-based 30-m class telescope with AO : PSF and spectroscopy

PSF of WFC3/IR	= 128 to 160 mas	over λ = 0.8 to 1.7 micron
PSF of JWST/NIRCam	= 84 to 197 mas	over $\lambda = 0.6$ to 4.7 micron

30 m TMT or GMT with AO (diffraction limited) = tens of mas R > 5,000 : Gas kinematics (disk signature, inflow, outflow). Metallicity Stellar mass density at M<1e10

Merger/Interaction in different enviroments

Major mergers in A901/902 are offset from center of cluster, and peaks of DM

Does F rise from cluster to field at given M, z?

- ~ 1% in A901/902 at z~0.16
- ~ 1.5% in groups z~0.12 (McIntosh et al 2007)

~ 7% to 9% in field (Jogee al 2008)

(Heiderman, Jogee & STAGES, 2008 in prep)

The problem of bulgeless galaxies

Formation of classical bulges

1) Classical bulge: $R^{1/4}$ de Vaucouleurs profile , low v/ σ

Major merger of two disks of stars+gas à Violent relaxation à R^{1/4} bulge.

Formation of disky bulges from bars/minor mergers

Disky bugles = high v/σ, often exponential, stellar component in the inner kpc, bars/minor mergers drive gas inflows, fuel central starburst à build CN disks (Kormendy 93; Kormendy & Kennicutt 2004; Athanassoula 2005; Jogee, Scoville, & Kenney 2005; Debattista et al 2006)

Formation of boxy/peanut bulges from bars

Buckling instability and vertical ILRs make edge-on bars look peanut/boxy

Recurrent Buckling of Galactic Bars

Inma Martinez-Valpuesta University of Hertfordshire, UK University of Kentucky, USA Isaac Shlosman University of Kentucky, USA &

Clayton Heller Georgia Southern University, USA

Bulge of Milky Way

Martinez-Valpuesta, Shlosman, & Heller 2005

Bulgeless galaxy problem

Cosmological simulations predict very few bulgeless or low B/T galaxies

(Burkert, Kochfar & D'onghea 2008)

Yet bulgeless and very low B/T galaxies common in local Universe

- Scd/Sd galaxies
- 15% to 20% of inclined disk galaxies at z~0.01-0.03 are bulgeless (Kautch et al 2006; Barazza, Jogee & Marinova 2007)

Bulgeless Galaxies

z=0.34 to 0.47 (Tb = 4 to 5 Gyr)

z=0.24 to 0.34 (Tb=3 to 4 Gyr)

z=0.47 to 0.80 (Tb = 5 to 7 Gyr)

Future work needed for bulgeless galaxy problem

Theoretically

Is the bulgeless galaxy problem due to merger history? due to lack of spatial resolution (central condensations = bulge) ? due to excessive loss of angular momentum ? due to inadequate feedback ?

Observationally

Better characterize frequency and properties (M, SSFR, L) of bulgeless galaxies

Map B/T as function of (z, merger history, environment).

<u>3-component Bulge + Disk + Bar decomposition to derive B/T</u>


```
1 cpt = Single Sersic fit
```

2 cpt = Bulge + Disk fit B/T ~ 62% D/T~ 38%

3 cpt = Bulge+Disk+Bar

Bar/T ~19% B/T ~ 52% D/T~ 29%

(Laurikainen et al 2004; Reese et al 2007; Peng et al 2002)

Bars and Secular Evolution

Importance of Bars

Bars redistribute angular momentum in baryonic and DM component of disk galaxies driving their evolution

Bars resonantly exchange L with disk + DM halo.

Bars drive gas inflows into inner kpc via g-torques and shocks

- à fuel central starbursts
- à indirectly help BH to grow
- à bulild disky bulges

Frequency of bars at z~0

For intermediate Hubble type (Sb-Sc)

Optical bar fraction

- B-band ~ 44% (Marinova & Jogee 2007); ellipse fit
- R-band ~ 43% for B+D systems (Barazza et al 2007) e-fit
- I-band ~ 47% (Reese, Sellwood et al 2007), B+D+Bar decom

NIR bar fraction

- H-band ~ 60 % (Marinova & Jogee 2007), e-fit
- H-band ~ 60 % (Laurikainen et al 2004)
- K-band ~ 58% (Menendez-Delmestre et al. 2007) e-fit
- à Correction for obscuration = 1.3 for e-fit at z=0

(Marinova & Jogee 2007)

How frequent are bars out to z~1

Order of magnitude decline in bar fraction from z~0 to 1 "from 21% to 34%" to "below 1%" (van den Bergh et al 00)

At z>0.5, there are no strong bars [e>0.4 corresponding to (b/a)^2 <0.36] on Fig

The optical frequency of strong (e>0.4) bars out to z~1

The optical fraction (Fsb) of strong (e>0.4) bars does not decline by an order of magnitude, to below 1%.

<u>Raw data</u> allows for a constant bar fraction or a decline of ~ 2 .

But a large part of this decline can be due to artificial loss of bars due to systematic effects at higher z

- lower resolution
- rising obscuration by gas/dust
- SB dimming

After correcting for these effects, data allow for several possibilities

- moderate decline (<1.3)
- constant bar fraction
- a rising bar fraction with z

Artificial loss of bars as over z=0.2-0.8 due to spatial resolution

For ellipse fit to reliably detect bars need a>2.5 PSF and a>= 5 pixels. Start to lose primary bars over $z\sim0.3$ to 0.8.

à Loss factor
$$X1 = 1.4$$

Artificial loss of bars as over z=0.2-0.8 due to spatial resolution

à Small primary bars (d<4 kpc or a<2 kpc) not reliably traced in ACS images

à Weak bars with SF in very faint disks may be mistaken for disks with spirals

Artificial loss of bars as over z=0.2-0.8 due to rising obscuration

At z =0, correction X_{obs} for obscuration of bars in the optical by SF and dust = 1.3
 Optical bar fraction ~ 44% to 47% (Marinova & Jogee 07; Reese et al 07; Barazza et al 07)
 NIR bar fraction I ~ 58% to 60% (Laurikainen et al 04; Menendez-Delmestre et al 07; MJ07)

Artificial loss of bars as over z=0.2-0.8 due to rising obscuration

• Over z =0.2 to 0.8

- average SFR increase by ~4 with z
- à gas dust/content likely rises with z
- à Obscuration of bars in optical Irises

Artificial loss by factor X2> 1.3

How to estimate X2 ?

Need high resolution rest-frame NIR (>=1mu) to detect obscured bars of intermediate size

- * WFC3/F160W over z=0.2 to 0.6
- * JWST/NIRCam 1.76mu to 5mu over z=0.2 to 3
- * TMT or GMT with A0

<u>Summary</u>

HLCDM models provide a good paradigm for how DM evolves on large scales. Complementary insights from large/deep surveys ACS (+ Spitzer, Chandra, GALEX)

Merger history since z<2

- the frequency of strongly disturbed merging/interacting galaxies drops significantly from z>2 (>40%) to z<1 (<10%)
- Merger rate is ~ few 10⁻⁴ galaxies Mpc-3 Gyr-1.
 At least 1/3 are candidates for minor mergers
- Merger fraction at $z\sim0.2$ to 1 are in good agreement with HLCDM models
- Secular and internal processes (bars/minor mergers, smooth accretion, bars)? become increasingly important at z<1 vs z>2

<u>Summary</u>

Star formation since z<1

- Average SFR of strongly disturbed galaxies is enhanced only by a factor of 2-3 w.r.t that of normal undisturbed galaxies. While huge bursts of star formation may happen in galaxy interactions/mergers, they are not the norm at z<1
- Cosmic SFR density over z=0.2 to 0.8 is contributed mostly by normal undisturbed galaxies (80%) vs strongly distorted galaxies (20%)
 à its decline may be caused by drop in gas content
 - à consistent w/ theoretical models of merger-driven BH growth (H05)

<u>Summary</u>

Structural assembly

Bars are frequent at z~0.2 to 1 and do not decline by an order of magnitude. Current data, after correcting for systematics (PSF, obscuration, SB dimming) allow for a bar fraction that is

à moderately declining (~1.5), constant or even rising with redshift Need WFC3 or large ground telescope/AO

<u>Bulgeless galaxy problem</u>: LCDM cosmogonies predict few galaxies of low B/T while observations suggest such systems are common (f~15% to 20% at z<0.3)

à need B/T as function of (z, merger history, environment).

Future

WFC3, JWST, GMT/TMT, ALMA