Astro 358/Spring 2009 (48540)

Galaxies and the Universe

Figures for Lecture 3-5 (Th Jan 29 to Tu Feb 7)

Do external galaxies exist ?

1) 1920s : The Great Debate": Harlow Shapley vs Heber Curtis

- Are spiral nebulae large distant systems like the Milky Way or nearby small objects associated with our own Galaxy?
- → Shapley: Milky Way is huge (diameter ~100 kpc, Sun off center) and spiral nebulae are small nearby companions
- → Curtis: Milky Way is small (d~18 kpc, Sun at center) and spiral nebulae are external stellar systems (galaxies) comparable to the Milky Way, but very distant from us
- 2) Progress: Accurate distances + realization that galaxies have dust
- 3) 1927: Edwin Hubble use Cepheids to show M31 distance = 770 kpc M31 and other spiral nebulae are external galaxies

$\underline{Po \ external \ galaxies \ exist \ ?}$

<u>Galaxies types based on total mass</u> <u>and morphology</u>

Galaxies types based on total mass and morphology

1) High mass - Elliptical galaxies (E, cE) - Lenticular galaxies (S0) - Spiral galaxies (Sa to Sd)

2) Low mass - Irregular galaxies (Sm, Im Irr) - Dwarf galaxies (dIrr, dE, dSph)

3) Mixed -Peculiar/Interacting

See in class notes

Table 1. Properties of E, Spirals (Sa-Sd), Irregulars (Sm,Im,Irr) & Dwarfs (dIrr,dE, dSph)									
	Е	Sa to Sc	Sd/Sm	Im/Irr	Dwarfs (dE,dIrr,dSph +BCD)				
Dynamical Mass M_d (M_{\odot})	$10^8 - 10^{13}$	$10^9 - 10^{12}$	$10^8 - 10^{10}$	$10^8 - 10^{10}$	$10^7 - 10^9$				
D_{25} (kpc)	1-200	5-100	0.5-50	0.5-50	dE: 1-10 dIrr: 1-10 dSph: 0.1-0.5 BCD: < 3				
M_B	-15 to -23 (mostly -17 to -23) -15 to -19 for cE -19 to -23 for rest	Sa: -17 to -23 Sb: -17 to -23 Sc: -16 to -22	-15 to -20	-13 to -18	dIrr: -15 to -18 BCD: -14 to -17 dE: -13 to -19 dSph: -1.5 to -15				
$L_B (L_{\odot})$	$(0.3 - 4) \times 10^{10}$ for intermediate and giant E but lower for low luminosity E	Sa: $(1 - 3) \times 10^{10}$	$(< 0.1 - 2) \times 10^{10}$						
Mass-to-light ratio $M_d/L_B (M_{\odot}/L_{\odot})$	10 - 100	Sa: 6.2 Sb: 4.5 Sc: 2.6	~ 1	~ 1	dSph: ~ 5 to ~ 3500				
B - V	0.7-1.2	Sa: 0.75 Sb: 0.64 Sc: 0.52	0.47	0.37					
$M_{\rm gas}/M_{\star}$		Sa: 0.04 Sb: 0.08 Sc: 0.16	0.25		dIrr: > 0.25				
$M(HI)/L_B$	< 0.1	Sa: 0.05 - 0.1	0.25 to > 1						
Peak V_c (km s ⁻¹)	0-100	Sa: 163-367 Sb: 144-330 S-: 00.204		50-70					

Velocity dispersion 50 $\langle \sigma_s \rangle$ (km s ⁻¹) V_c/σ_s Stars dominating color Note. — References: T RA&A, 36, 435 and 2011, erms used in table refer to	E Sa to 0 - 400 5 - 10 - G/K ··· iables 3.1/EA	50 Sc Sd/Sn 50 ∼ 10 40 ···	n Im/Irr ~ 10 ~ 5 \cdots	Dwarfs (dE,dIrr,dSph +BCD) dSph: 3.5 - 20
Velocity dispersion 50 $\langle \sigma_* \rangle$ (km s ⁻¹) V_c / σ_* Stars dominating color Note. — References: T RA&A, 36, 435 and 2011, ierms used in table refer to	0 - 400 5 - 10 - G/K · · · ables 3.1/EA	50 ~ 10 40 ···	~ 10	dSph: 3.5 – 20
V_c/σ_* Stars dominating color Note. — References: T .RA&A, 36, 435 and 2011, 'erms used in table refer to	10 - G/K · · · ables 3.1/EA	. 40	~ 5	
Stars dominating color Note. — References: T RA&A, 36, 435 and 2011, erms used in table refer to	G/K ···			
Note. — References: T RA&A, 36, 435 and 2011, 'erms used in table refer to	ables 3.1/EA			
I_d = dynamical mass = ms I_* = mass of stars I_{gas} = mass of atomic and I(HI) = mass of atomic hydroxic	ass of visible r molecular gas drogen	natter (gas+:	stars) + ma	ass of dark matter
c = peak circular speed of	stars			
∗= velocity dispersion of st	ars			

Spiral Galaxies: Edge-on view

Typical spiral, where outer disk is more massive and luminous than central bulge (Bulge/Disk luminosity ratio well below 1)

NGC 4594 or M104 (Sombrero) An unusual spiral, with an unusually large bulge and a dusty disk, seen edge-on (Bulge/Disk luminosity ratio > 2)

Strongly Barred spiral (SBbc) NGC 1300

A stellar bar drives gas (via shocks+ torques) from the disk into the central kpc where \rightarrow it ignites powerful central bursts of star formation:.. 10 billions L_{sun}! \rightarrow It may help to feed the central monster (black **hole**)

Useday barred and unbarred spiralsImage: problem of the spiral spira

le 3.2. Characteristic values for spiral galaxies. V_{max} is the imum rotation velocity, thus characterizing the flat part ne rotation curve. The opening angle is the angle under ch the spiral arms branch off, i.e., the angle between the		tangent to the spiral arms and the circle around the center of H galaxy running through this tangential point. S _N is the specif abundance of globular clusters as defined in (3.13). The value in this table are taken from the book by Carroll & Ostlic (1990			
escolity, and the	Sa	Sb	Sc	Sd/Sm	Im/Ir
(M_{\odot}) $\log(L_{0.0})_B$ $\min(D_{23}, kpc)$ $m_{1}(L_{B})(M_{\odot}/L_{\odot})$ $m_{2}(lom s^{-1})$ $m_{3}(lom s^{-1})$ $m_{3}(m_{3}s^{-1})$ $B (mag arcsec^{-2})$ $-V (M_{10})$ $m_{2}/M_{10}(l_{10})$ l_{1}	$\begin{array}{c} -17 \ \text{to} \ -23 \\ 10^{29} - 10^{12} \\ 0.3 \\ 5 - 100 \\ 6.2 \pm 0.6 \\ 299 \\ 163 - 367 \\ - 6^{\circ} \\ 21.52 \pm 0.37 \\ 0.75 \\ 0.04 \\ 2.2 \pm 0.6 \ \text{(Sab)} \\ 1.2 \pm 0.2 \end{array}$	$\begin{array}{c} -17 \ \mathrm{to} \ -23 \\ 10^{\theta} - 10^{12} \\ 0.13 \\ 5 - 100 \\ 4.5 \pm 0.4 \\ 222 \\ 144 - 330 \\ \sim 12^{\circ} \\ 21.52 \pm 0.39 \\ 0.64 \\ 0.08 \\ 1.8 \pm 0.3 \\ 1.2 \pm 0.2 \end{array}$	$\begin{array}{c} -16\ \text{is}\ -22\\ 10^9-10^{12}\\ 0.05\\ 5-100\\ 2.6\pm0.2\\ 175\\ 99-304\\ -18^9\\ 2.152\pm0.39\\ 0.52\\ 0.16\\ 0.73\pm0.13\\ 0.5\pm0.2\end{array}$	$\begin{array}{c} -15 \ \text{iso} -20 \\ 10^8 - 10^{10} \\ - \\ 0.5 - 50 \\ \sim 1 \\ - \\ - \\ 22.61 \pm 0.47 \\ 0.47 \\ 0.25 \ (\text{Scd}) \\ 0.19 \pm 0.10 \\ 0.5 \pm 0.2 \end{array}$	$\begin{array}{c} -13 \ {\rm to} -18 \\ 10^8 - 10^{10} \\ - \\ - \\ - \\ - \\ 50 - 70 \\ - \\ 22.61 \pm 0.47 \\ 0.37 \\ - \\ - \\ - \\ - \\ - \\ - \end{array}$

٦

Irregular Galaxies (Sm, Im, Irr)

Large Magellanic Cloud or LMC Type (SB(s)m) Distance = 50 kpc Image diameter = 10 kpc

Small Magellanic Cloud or SMC Type = SB(s)m pec or Im Distance = 63 kpc Image diameter = 6 kpc

Some dEs show disk features (bar, spiral arms)

(Barazza et al .2002, A&A)

Specially processed images (unsharp masked images) of bright dE and dS0s reveal:

-IC3468 (dE) ; short bar in a nearly face-on disk or small disk seen edge-on in a spheroid

- IC3349 (dE) ; show a weak bar-like elongated central structure

-NGC 4431 (dS0) ; strong long

bar - IC0783 dS0); spirals

Major mergers: gas inflows, conversion of gas to stars, violent relaxation of stars converting disk configuration into spheroidal distribution of stars

Example of a minor merger

The Elliptical/Peculiar galaxy (NGC 1316) → recently accreted small gas-rich galaxies

2 fundamental groups of galaxies dominated by disks versus puffed-up SST components

SST = Spherical/Spheroidal/Triaxial components

- Massive Es

- Some S0s + rare spirals dominated by classical bulges

Massive Elliptical

Irr (LMC)

- Some S0s dominated by outer disks - Under debate: Some dE, low mass E

Ideally, we want to measure

- R = (Stellar mass in Spherical/Spheroidal/Triaxial components / Stellar mass in disk) = (M. in SST)/(M. in Disk)
- = (M. in classical bulge or massive Elliptical)/ (M. in disk)
- In practice, we measure in (spiral, S0s, E), the bulge-to-disk (B/D) ratio B/D = (M. in bulge)/(M. in disk)

= 1 for massive E, 0 for pure disk galaxy, intermediate for Spirals and S0 where bulge is defined as central component containing excess light over outer disk

One problem in using B/D as a proxy for R is that "bulges" defined in the above way include not just puffed-up classical bulges, but also disky bulges, peanut bulges

B/D ratio rises from Sc to Sa

