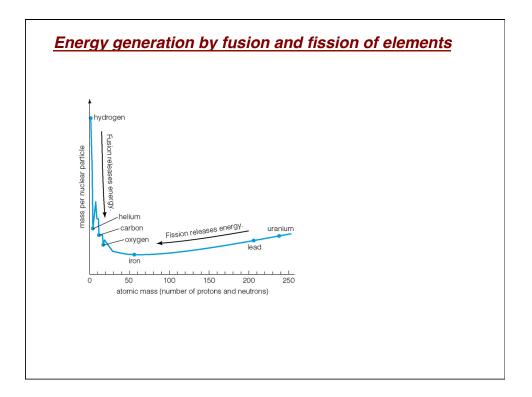
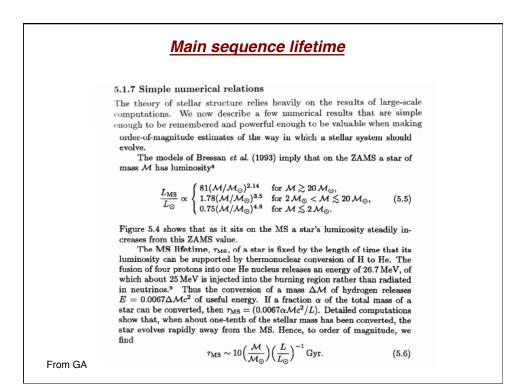
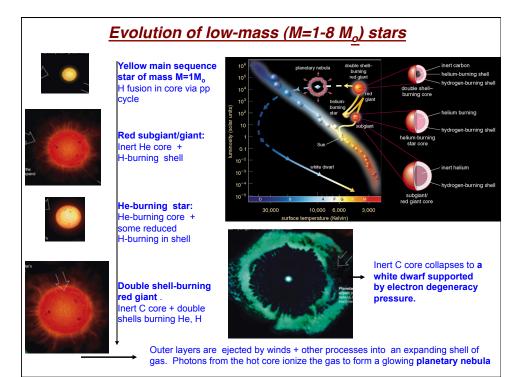
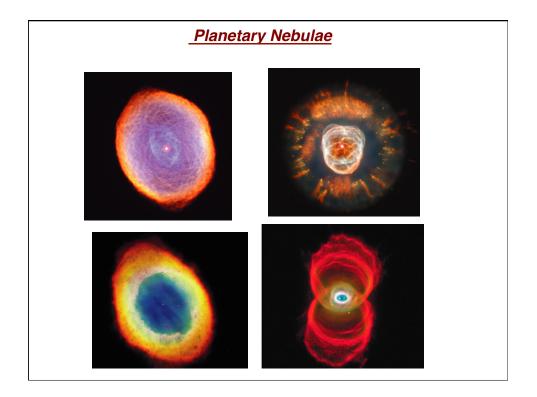


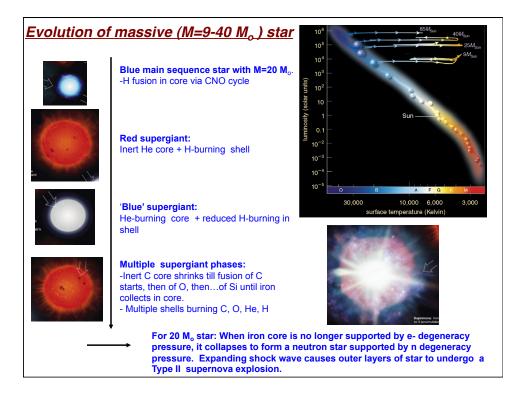
Т	able 3.1 F	rincipal characteristics of spectral types
2	Spectral type	e Spectral features
	0	He II lines visible; lines from highly ionized species, for ex- ample, C III, N III, O III, Si IV; H lines relatively weak; strong UV continuum
	В	He I lines strong, attain maximum at B2; He II lines ab- sent; H lines stronger; lower-excitation ions, for example, CII, O II, Si III
	А	H lines attain maximum strength at A0 and decrease to- wards later types; Mg II, Si II strong; Ca II weak and increasing in strength
	F	H weaker, Ca II stronger; lines of neutral atoms and first ionization states of metals appear prominently
	G	Solar-type spectra; Ca II lines extremely strong; neutral metals prominent, ions weaker; G band (CH) strong; H lines weakening
	К	Neutral metallic lines dominate; H quite weak; molecular bands (CH, CN) developing; continuum weak in blue
	М	Strong molecular bands, particularly TiO; some neutral lines, for example, CA I, quite strong; red continuum
	С	Carbon stars; strong bands of carbon compounds C ₂ , CN, CO; TiO absent; temperatures in range types K and M
m GA	S	Heavy-element stars; bands of ZrO, YO, LaO; neutral atoms strong as in types K and M; overlaps these types in temperature range


	Table 3.7	The effectiv	ve-temper	ature and	bolometri	c-correction	scales			
	Table 3.7 The effective-temperature and bolometric-correction scales Luminosity Class									
	Spectral V III I									
	type	$T_{ m eff}/ m K$	BC_V	$T_{\rm eff}/{ m K}$	BC_V	$T_{ m eff}/ m K$	BC_V			
	O3	52 500	-4.75	50 000	-4.58	47 300	-4.41			
	O5	44 500	-4.40	42 500	-4.05	40 300	-3.87			
	07	38 000	-3.68	37 000	-3.58	35 700	-3.48			
	09	33 000	-3.33	32 000	-3.13	32 600	-3.18			
	B0	30 000	-3.16	29 000	-2.88	26 500	-2.49			
	B2	22 000	-2.35	20 300	-2.02	18 500	-1.58			
	B3	18 700	-1.94	17100	-1.60	16 200	-1.26			
	B5	15 400	-1.46	15 000	-1.30	13 600	-0.95			
	B7	13 000	-1.02	13 200	-0.97	12 200	-0.78			
	B8	11 900	-0.80	12 400	-0.82	11 200	-0.66			
	A0	9 5 2 0	-0.30	10 100	-0.42	9730	-0.41			
	A5	8 200	-0.15	8100	-0.14	8510	-0.13			
	F0	7 200	-0.09	7150	-0.11	7 700	-0.01			
	F5	6 4 4 0	-0.14	6 4 7 0	-0.14	6 900	-0.03			
	G0	6 0 3 0	-0.18	5 850	-0.20	5 5 5 0	-0.15			
	G2	5 860	-0.20	5 4 5 0	-0.27	5 200	-0.21			
	G5	5770	-0.21	5 1 5 0	-0.34	4 850	-0.33			
	K0	5 2 5 0	-0.31	4 750	-0.50	4 4 20	-0.50			
	K5	4 3 50	-0.72	3 950	-1.02	3 8 50	-1.01			
rom GA	MO	3 850	-1.28	3 800	-1.25	3 6 5 0	-1.29			
UIII GA	M5	3 2 4 0	-2.73	3 3 3 0	-2.48	2800	-3.47			
	M8	2640	-4.1							


Table 3.13	Table 3.13 Physical properties of MS stars									
Spectral type	${\cal M}/{\cal M}_{\odot}$	$\log(L/L_{\odot})$	$M_{ m bol}$	M_V	R/R_{\odot}	$ar{ ho}/ar{ ho}_{\odot}$				
O3	120	6.15	-10.7	-6.0	15	0.035				
O5	60	5.90	-10.1	-5.7	12	0.035				
08	23	5.23	-8.4	-4.9	8.5	0.037				
B0	17.5	4.72	-7.1	-4.0	7.4	0.043				
B3	7.6	3.28	-3.5	-1.6	4.8	0.069				
B5	5.9	2.92	-2.7	-1.2	3.9	0.099				
B8	3.8	2.26	-1.0	-0.2	3.0	0.14				
AO	2.9	1.73	0.3	0.6	2.4	0.21				
A5	2.0	1.15	1.7	1.9	1.7	0.41				
FO	1.6	0.81	2.6	2.7	1.5	0.47				
F5	1.3	0.51	3.4	3.5	1.3	0.59				
G0	1.05	0.18	4.2	4.4	1.1	0.79				
G5	0.92	-0.10	4.9	5.1	0.92	1.18				
K0	0.79	-0.38	5.6	5.9	0.85	1.29				
K5	0.67	-0.82	6.7	7.4	0.72	1.79				
M0	0.51	-1.11	7.4	8.8	0.60	2.36				
M5	0.21	-1.96	9.6	12.3	0.27	10.7				
M7	0.12	-2.47	10.8	14.3	0.18	20.6				
M8	0.06	-2.92	11.9	16.0	0.1	60				


	M_V	BC	15 - V	U - B	B - V	V - R	V - I	J - K	V - K	$T_{\rm eff}$
03	-6	4.5	12 	-1.22	-0.32	(18) <u></u>)	5.02 	2 ()	00-1	50 000
05	-5.6	4.0	1 m	-1.19	-0.32	-0.14	-0.32	-0.25	-0.99	43 000
28	-4.8	3.3	-4.1	-1.14	-0.32	-0.14	-0.32	-0.24	-0.96	35 000
BO	-4.0	2.9	-4.0	-1.07	-0.30	-0.13	-0.30	-0.23	-0.91	29 800
B3	-1.4	1.6	-2.9	-0.75	-0.18	-0.08	-0.20	-0.15	-0.54	18750
B6	-1.0	1.2	-2.3	-0.50	-0.14	-0.06	-0.13	-0.09	-0.39	14 000
B8	-0.25	0.8	-1.7	-0.30	-0.11	-0.04	-0.09	-0.06	-0.26	11 600
40	0.8	0.3	-0.4	0.0	0.0	0.0	0.0	0.0	0.0	9400
45	1.8	0.1	3.3	0.08	0.19	0.13	0.27	0.08	0.38	7800
FO	2.4	0.1	6.0	0.06	0.32	0.16	0.33	0.16	0.70	7300
F5	3.3	0.1	de-las	-0.03	0.41	0.27	0.53	0.27	1.10	6500
G 0	4.2	0.2		0.05	0.59	0.33	0.66	0.36	1.41	6000
Sun	4.83	0.07		0.14	0.65	0.36	0.72	0.37	1.52	5780
G5	4.93	0.2		0.13	0.69	0.37	0.73	0.41	1.59	5700
K0	5.9	0.4	- The	0.46	0.84	0.48	0.88	0.53	1.89	5250
K5	7.5	0.6		0.91	1.08	0.66	1.33	0.72	2.85	4350
K7	8.3	1.0	<u></u>	0	1.32	0.83	1.6	0.81	3.16	4000
MO	8.9	1.2	10 0 <u>10</u> 00	13 (<u>10</u> 10.0	1.41	0.89	1.80	0.84	3.65	3800
M2	10.2	1.6	130-00	di <u>-</u> 30	1.52	1.00	2.16	0.86	4.11	3500
M4	12.7	2.6	_		1.60	1.23	2.86	0.89	5.28	3150
M6	16.6	4.4	<u>_11</u> 6_1		2.06	1.91	4.13	1.04	7.37	2800
M7	18.6	5.5		<u> 1999</u>	and Total day	2.18	4.50	1.22	8.55	2600




	M_V	BC	U - B	B - V	V - R	V - I	J - K	V - K	$T_{\rm eff}$
G5	0.9	0.3	0.50	0.88	0.48	0.93	0.57	2.10	5000
K0	0.7	0.4	0.90	1.02	0.52	1.00	0.63	2.31	4800
K5	0.3	1.1	1.87	1.56	0.84	1.63	0.95	3.60	3900
M0	-0.4	1.3	1.96	1.55	0.88	1.78	1.01	3.85	3850
M3	-0.6	1.8	1.83	1.59	1.10	2.47	1.13	4.40	3700
M5	-0.4	3	1.56	1.57	1.31	3.05	1.23	5.96	3400
M7	v	5	0.94	1.69	3.25	5.56	1.21	8.13	3100
Note:	M7 stars o	of class I	II are often	variable.					

