

Table 3.1 Principal characteristics of spectral types

Spectral type	Spectral features
0	He II lines visible; lines from highly ionized species, for example, C III, N III, O III, Si IV; H lines relatively weak; strong UV continuum
В	He I lines strong, attain maximum at B2; He II lines absent; H lines stronger; lower-excitation ions, for example, CII, O II, Si III
A	H lines attain maximum strength at A0 and decrease to- wards later types; Mg II, Si II strong; Ca II weak and increasing in strength
F	H weaker, Ca II stronger; lines of neutral atoms and first ionization states of metals appear prominently
G	Solar-type spectra; Ca II lines extremely strong; neutral metals prominent, ions weaker; G band (CH) strong; H lines weakening
K	Neutral metallic lines dominate; H quite weak; molecular bands (CH, CN) developing; continuum weak in blue
M	Strong molecular bands, particularly TiO; some neutral lines, for example, CA I, quite strong; red continuum
С	Carbon stars; strong bands of carbon compounds C ₂ , CN, CO; TiO absent; temperatures in range types K and M
S	Heavy-element stars; bands of ZrO, YO, LaO; neutral atoms strong as in types K and M; overlaps these types in temperature range

Spectral type of stars in Harvard system and MK system = 0 A B F G K M Defined by spectral features originally. Turns out to be a sequence in T_eff

Table 3.13 Physical properties of MS stars

Spectral	· · · · · · · · · · · · · · · · · · ·					
type	$\mathcal{M}/\mathcal{M}_{\odot}$	$\log(L/L_{\odot})$	$M_{ m bol}$	M_V	R/R_{\odot}	$ar ho/ar ho_\odot$
О3	120	6.15	-10.7	-6.0	15	0.035
O5	60	5.90	-10.1	-5.7	12	0.035
O8	23	5.23	-8.4	-4.9	8.5	0.037
$\mathbf{B0}$	17.5	4.72	-7.1	-4.0	7.4	0.043
B3	7.6	3.28	-3.5	-1.6	4.8	0.069
$\mathbf{B5}$	5.9	2.92	-2.7	-1.2	3.9	0.099
B8	3.8	2.26	-1.0	-0.2	3.0	0.14
$\mathbf{A0}$	2.9	1.73	0.3	0.6	2.4	0.21
$\mathbf{A5}$	2.0	1.15	1.7	1.9	1.7	0.41
$\mathbf{F0}$	1.6	0.81	2.6	2.7	1.5	0.47
F5	1.3	0.51	3.4	3.5	1.3	0.59
$\mathbf{G0}$	1.05	0.18	4.2	4.4	1.1	0.79
G5	0.92	-0.10	4.9	5.1	0.92	1.18
$\mathbf{K0}$	0.79	-0.38	5.6	5.9	0.85	1.29
K5	0.67	-0.82	6.7	7.4	0.72	1.79
M0	0.51	-1.11	7.4	8.8	0.60	2.36
M5	0.21	-1.96	9.6	12.3	0.27	10.7
M7	0.12	-2.47	10.8	14.3	0.18	20.6
M8	0.06	-2.92	11.9	16.0	0.1	60

SOURCE: Data published in Schmidt-Kaler (1982)

Main Sequence Stars

Table 1.1 Stellar models with solar abundance, from Figure 1.4

Mass (\mathcal{M}_{\odot})	$L_{ m ZAMS} \ (L_{\odot})$	T _{eff} (K)	Spectral type	$ au_{ m MS} \ ({ m Myr})$	$ au_{ m red} \ ({ m Myr})$	$\int (Ld\tau)_{\rm MS} $ (Gyr × L_{\odot})	$\int (Ld au)_{ m pMS} \ ({ m Gyr} imes L_{\odot})$
0.8	0.24	4860	K2	25 000		10	
1.0	0.69	5640	G5	9800	3200	10.8	24
1.25	2.1	6430	<u> </u>	3900	1650	11.7	38
1.5	4.7	7110	F3	2700	900	16.2	13
2	16	9080	A2	1100	320	22.0	18
3	81	12 250	B7	350	86	38.5	19
5	550	17 180	B4	94	14	75.2	23
9	4100	25 150	_	26	1.7	169	40
15	20 000	31 050		12	1.1	360	67
25	79 000	37 930	toes Ph	6.4	0.64	768	145
40	240 000	43 650	O5	4.3	0.47	1500	112
60	530 000	48 190	es and reasons	3.4	0.43	2550	9
85	1 000 000	50 700	Held To Held	2.8	10.5 <u>10.</u> 5 1.5	3900	Arkeleoneppl
120	1 800 000	53 330	esti Lordi	2.6	Michaba	5200	nech - Little

Note: L and $T_{\rm eff}$ are for the zero age main sequence; spectral types are from Table 1.3; $\tau_{\rm MS}$ is main-sequence life; $\tau_{\rm red}$ is time spent later as a red star ($T_{\rm eff} \lesssim 6000\,{\rm K}$); integrals give energy output on the main sequence (MS), and in later stages (pMS).

Lifetime and energy output on the Main Sequence and after the main sequence phase – Tab 1.1 GU.

Table 1.3 Average magnitudes and colors for main-sequence stars: class V (dwarfs)

	M_V	BC	15 – V	U - B	B-V	V - R	V-I	J-K	V - K	$T_{ m eff}$
O3	-6	4.5		-1.22	-0.32			_		50 000
O5	-5.6	4.0		-1.19	-0.32	-0.14	-0.32	-0.25	-0.99	43 000
O8	-4.8	3.3	-4.1	-1.14	-0.32	-0.14 `	-0.32	-0.24	-0.96	35 000
B 0	-4.0	2.9	-4.0	-1.07	-0.30	-0.13	-0.30	-0.23	-0.91	29 800
B 3	-1.4	1.6	-2.9	-0.75	-0.18	-0.08	-0.20	-0.15	-0.54	18750
B 6	-1.0	1.2	-2.3	-0.50	-0.14	-0.06	-0.13	-0.09	-0.39	14 000
B8	-0.25	0.8	-1.7	-0.30	-0.11	-0.04	-0.09	-0.06	-0.26	11 600
A 0	0.8	0.3	-0.4	0.0	0.0	0.0	0.0	0.0	0.0	9400
A5	1.8	0.1	3.3	0.08	0.19	0.13	0.27	0.08	0.38	7800
F0	2.4	0.1	6.0	0.06	0.32	0.16	0.33	0.16	0.70	7300
F5	3.3	0.1		-0.03	0.41	0.27	0.53	0.27	1.10	6500
G0	4.2	0.2		0.05	0.59	0.33	0.66	0.36	1.41	6000
Sun	4.83	0.07		0.14	0.65	0.36	0.72	0.37	1.52	5780
G5	4.93	0.2		0.13	0.69	0.37	0.73	0.41	1.59	5700
K 0	5.9	0.4		0.46	0.84	0.48	0.88	0.53	1.89	5250
K5	7.5	0.6	_	0.91	1.08	0.66	1.33	0.72	2.85	4350
K7	8.3	1.0	_	_	1.32	0.83	1.6	0.81	3.16	4000
M 0	8.9	1.2	_	_	1.41	0.89	1.80	0.84	3.65	3800
M2	10.2	1.6	-	_	1.52	1.00	2.16	0.86	4.11	3500
M 4	12.7	2.6	_		1.60	1.23	2.86	0.89	5.28	3150
M6	16.6	4.4			2.06	1.91	4.13	1.04	7.37	2800
M7	18.6	5.5	_	_		2.18	4.50	1.22	8.55	2600

Note: The color 15 - V is from a flux-based magnitude at $1550 \,\text{Å}$, as defined by Equation 1.12, measured by the OAO and ANS satellites. BC is the bolometric correction, defined in Equation 1.15.

Stars with luminosity class V = Dwarfs = include Main Sequence Stars

Table 1.4 Average magnitudes and colors for red giant stars: class III

	M_V	BC	U - B	B-V	V - R	V-I	J - K	V - K	$T_{ m eff}$
G5	0.9	0.3	0.50	0.88	0.48	0.93	0.57	2.10	5000
K0	0.7	0.4	0.90	1.02	0.52	1.00	0.63	2.31	4800
K5	0.3	1.1	1.87	1.56	0.84	1.63	0.95	3.60	3900
M0	-0.4	1.3	1.96	1.55	0.88	1.78	1.01	3.85	3850
M3	-0.6	1.8	1.83	1.59	1.10	2.47	1.13	4.40	3700
M5	-0.4	3	1.56	1.57	1.31	3.05	1.23	5.96	3400
M7	v	5	0.94	1.69	3.25	5.56	1.21	8.13	3100

Note: M7 stars of class III are often variable.

Table 1.5 Average magnitudes and colors for supergiant stars: class I

					•			
	M_V	ВС	U - B	B-V	V - R	V-I	V - K	$T_{ m eff}$
O8	-6.5	3.6	-1.07	-0.24	_			35 750
B 0	-6.4	2.6	-1.03	-0.22	-0.08	-0.2		25 600
B6	-6.2	1.0	-0.72	-0.09	-0.01	-0.07	_	13 500
A 0	-6.3	0.2	-0.44	0.02	0.05	0.11	0.9	9600
F0	-6.6	-0.1	0.16	0.17	0.12	0.25		7700
G5	-6.2	0.4	0.84	1.02	0.44	0.82	3	4850
K5	-5.8	1.0	1.7	1.60	0.81	1.50	_	3850
K0	-5.6	1.4	1.9	1.71	0.95	1.91	4	3650

Note: Supergiants have a large range in luminosity at any spectral type; Type Ia (luminous) and Ib (less luminous) supergiants can differ by 2 or 3 magnitudes.

Stars with luminosity class III = Normal giants Stars with luminosity class I = Supergiants

Table 3.7 The effective-temperature and bolometric-correction scales

			Luminos	ity Class			
${\bf Spectral}$		V	l II	[I	I		
type	$T_{ m eff}/{ m K}$	BC_V	$T_{ m eff}/{ m K}$	BC_V	$T_{ m eff}/{ m K}$	BC_V	
О3	52 500	-4.75	50 000	-4.58	47 300	-4.41	
O5	44 500	-4.40	42 500	-4.05	40 300	-3.87	
O7	38 000	-3.68	37 000	-3.58	35 7 00	-3.48	
O9	33 000	-3.33	32 000	-3.13	32 600	-3.18	
$\mathbf{B}0$	30 000	-3.16	29 000	-2.88	26 500	-2.49	
B2	22 000	-2.35	20 300	-2.02	18 500	-1.58	
B3	18 700	-1.94	17 100	-1.60	16 200	-1.26	
$\mathbf{B5}$	15 400	-1.46	15 000	-1.30	13 600	-0.95	
B7	13 000	-1.02	13 200	-0.97	12200	-0.78	
B 8	11 900	-0.80	12 400	-0.82	11 200	-0.66	
A 0	9 5 2 0	-0.30	10 100	-0.42	9 730	-0.41	
A5	8 200	-0.15	8 100	-0.14	8 5 1 0	-0.13	
$\mathbf{F0}$	7 200	-0.09	7 150	-0.11	7 700	-0.01	
$\mathbf{F5}$	6 440	-0.14	6 470	-0.14	6 900	-0.03	
$\mathbf{G0}$	6 030	-0.18	5 850	-0.20	5 550	-0.15	
G2	5 860	-0.20	5 450	-0.27	5 200	-0.21	
G5	5 770	-0.21	5 150	-0.34	4850	-0.33	
$\mathbf{K0}$	5 250	-0.31	4 750	-0.50	4420	-0.50	
K5	4 350	-0.72	3 950	-1.02	3 850	-1.01	
M0	3 850	-1.28	3 800	-1.25	3 650	-1.29	
M5	3 240	-2.73	3 330	-2.48	2800	-3.47	
M8	2 640	-4.1					
SOURCE: From	n data pub	lished in	$\operatorname{Schmidt-K}$	aler (1982)	!)		

Bolometric correction (to go fro M_v to M_Bol) for stars with different spectral types and luminosity classes (V, III, I). F stars which peak near V-band, have small BC.