A. The Electromagnetic Radiation Field

In this appendix, we will briefly review the most impor-
tant properties of a radiation field. We thereby assume
that the reader has encountered these quantities already
in a different context.

A.1 Parameters of the Radiation Field

The electromagnetic radiation field is described by the
specific intensity I,, which is defined as follows. Con-
sider a surface element of area d A. The radiation energy
which passes through this area per time interval d from
within a solid angle element dw around a direction de-
scribed by the unit vector n, with frequency in the range
between v and v+dv, is

dE =1,dA cos6drdwdy, (A1)

where @ describes the angle between the direction n of
the light and the normal vector of the surface element.
Then, dA cos @ is the area projected in the direction of
the infalling light. The specific intensity depends on the
considered position (and, in time-dependent radiation
fields, on time), the direction n, and the frequency v.
With the definition (A.1), the dimension of /, is energy
per unit area, time, solid angle, and frequency, and it is
typically measured in units of ergem ™2 s~ ster™! Hz ™"
The specific intensity of a cosmic source describes its
surface brightness.

The specific net flux F, passing through an area el-
ement is obtained by integrating the specific intensity
over all solid angles,

F, = / dw I, cosf . (A2)

The flux that we receive from a cosmic source is defined
in exactly the same way, except that cosmic sources
usually subtend a very small solid angle on the sky.
In calculating the flux we receive from them, we may
therefore drop the factor cos® in (A.2); in this con-
text, the specific flux is also denoted as S,. However,
in this Appendix (and only here!), the notation S, will
be reserved for another quantity. The flux is measured
in units of ergem™2s~! Hz™!. If the radiation field is
isotropic, F, vanishes. In this case, the same amount
of radiation passes through the surface element in both
directions.

The mean specific intensity J, is defined as the
average of I, over all angles,

1
Jy=— dwl,,
47T/ @

so that, for an isotropic radiation field, I, = J,. The
specific energy density u, is related to J, according to

4
u, = —J,
c

(A.3)

(A.4)

where u, is the energy of the radiation field per vol-
ume element and frequency interval, thus measured in
ergem ™ Hz™!. The total energy density of the radia-
tion is obtained by integrating u, over tfrequency. In the
same way, the intensity of the radiation is obtained by
integrating the specific intensity I, over v.

A.2 Radiative Transfer

The specific intensity of radiation in the direction of
propagation between source and observer is constant,
as long as no emission or absorption processes are oc-
curring. If s measures the length along a line-of-sight,
the above statement can be formulated as

dl,

ds
An immediate consequence of this equation is that the
surface brightness of a source is independent of its
distance. The observed flux of a source depends on
its distance, because the solid angle, under which the
source is observed, decreases with the square of the
distance, F, o« D™? (see Eq. A.2). However, for light
propagating through a medium, emission and absorp-
tion (or scattering of light) occurring along the path
over which the light travels may change the specific in-
tensity. These effects are described by the equation of
radiative transfer

dl,
ds
The first term describes the absorption of radiation

and states that the radiation absorbed within a length
interval ds is proportional to the incident radiation.

0. (A.5)

= —Ky Iv —{-—j‘, . (A6)
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The factor of proportionality is the absorption coef-
ficient k., which has the unit of cm™!. The emission
coefficient j, describes the energy that is added to the
radiation field by emission processes, having a unit
of ergem™ s Hz ™' ster™'; hence, it is the radiation
energy emitted per volume element, time interval, fre-
quency interval, and solid angle. Both, «, and j,, depend
on the nature and state (such as temperature, chemi-
cal composition) of the medium through which light
propagates.

The absorption and emission coefficients both ac-
count for true absorption and emission processes, as
well as the scattering of radiation. Indeed, the scatter-
ing of a photon can be considered as an absorption that
is immediately followed by an emission of a photon.

The optical depth 7, along a line-of-sight is defined
as the integral over the absorption coefficient,

§

Tl)(s) = f ds’ Kl)(s/) s

S0

(A.7)

where sy denotes a reference point on the sightline from
which the optical depth is measured. Dividing (A.6)
by «, and using the relation dr, =k, ds in order to
introduce the optical depth as a new variable along the
light ray, the equation of radiative transfer can be written
as

dl,
: :_I\)+Sl) P (AS)
dr,
where the source function
SR (A.9)
Ky

is defined as the ratio of the emission and absorption
coefficients. In this form, the equation of radiative trans-
port can be formally solved; as can easily be tested by
substitution, the solution is

I(z,) = 1,(0) exp (—1,)

Ty

—|—/dt‘,, exp (t, —1,) Su(z).
0

(A.10)

This equation has a simple interpretation. If 7, (0) is the
incident intensity, it will have decreased by absorption
Lo a value /,(0) exp (—t,) after an optical depth of t,.
On the other hand, energy is added to the radiation

field by emission, accounted for by the t'-integral. Only
a fraction exp (7:{, = rv) of this additional energy emitted
at ' reaches the point 7, the rest is absorbed.

In the context of (A.10), we call this a formal solution
for the equation of radiative transport. The reason for
this is based on the fact that both the absorption and
the emission coefficient depend on the physical state of
the matter through which radiation propagates, and in
many situations this state depends on the radiation field
itself. For instance, «,, and j, depend on the temperature
of the matter, which in turn depends, by heating and
cooling processes, on the radiation field to which it is
exposed. Hence, one needs to solve a coupled system
of equations in general: on the one hand the equation of
radiative transport, and on the other hand the equation
of state for matter. In many situations, very complex
problems arise from this, but we will not consider them
further in the context of this book.

A.3 Blackbody Radiation

For matter in thermal equilibrium, the source func-
tion S, is solely a function of the matter temperature,

S, =B,(T), or j,=B,(T)«,, (A.11)

independent of the composition of the medium (Kirch-
hoff’s law). We will now consider radiation propagating
through matter in thermal equilibrium at constant tem-
perature 7. Since in this case S, = B,(T) is constant,
the solution (A.10) can be written in the form

1(t,) = 1,(0) exp(—1,)

T

+ B.(T) / dt) exp (1, - 7))
0
= 1,(0) exp (=1,) + Bu(T) [1 —exp (~1,)] .

(A.12)

From this it follows that I, = B, (T) is valid for suffi-
ciently large optical depth t,. The radiation propagating
through matter which is in thermal equilibrium is de-
scribed by the function B, (7T') if the optical depth is
sufficiently large, independent of the composition of
the matter. A specific case of this situation can be il-
lustrated by imagining the radiation field inside a box
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whose opaque walls are kept at a constant tempera-
ture 7. Due to the opaqueness of the walls, their optical
depth is infinite, hence the radiation field within the box
isgivenby I, = B,(T"). This is also valid if the volume is
filled with matter, as long as the latter is in thermal equi-
librium at temperature T'. For these reasons, this kind
of radiation field is also called blackbody radiation.

The function B, (T) was first obtained in 1900 by
Max Planck, and in his honor, it was named the Planck
function; it reads

2/’113\13 1

2 ehpvikeT _1° (A.13)

B\(T)=

where hp = 6.625 x 1077 ergs is the Planck constant
and kg = 1.38 x 107 erg K~! is the Boltzmann con-
stant. The shape of the spectrum can be derived from
statistical physics. Blackbody radiation is defined by
1, = B,(T), and thermal radiation by S, = B,(T). For
large optical depths, thermal radiation converges to
blackbody radiation.
The Planck function has its maximum at

AP Vimax
kgT
i.e., the frequency of the maximum is proportional to

the temperature. This property is called Wien’s law. This
law can also be written in more convenient units,

~2.82, (A.14)

T
Vmax = 5.88 x 10'9 Hz = (A.15)

The Planck function can also be formulated de-
pending on wavelength A = ¢/v, such that By (T)dA =
By(T)dv,

2hpc? /A0
exp (hpc/MkpgTy—1"
Two limiting cases of the Planck function are of par-
ticular interest. For low frequencies, hpv << kgT, one
can apply the expansion of the exponential function for
small arguments in (A.13). The leading-order term in
this expansion then yields

(A.16)

B\(T) =

B/(T)~ (T) R kBT (A.17)

which is called the Raylezgh—]eans approximation of the
Planck function. We point out that the Rayleigh—Jeans
equation does not contain the Planck constant, and this
law had been known even before Planck derived his
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Fig. A.1. The Planck function (A.13) for different tempera-
tures 7. The plot shows B,(T) as a function of frequency v,
where high frequencies are plotted towards the left (thus large
wavelengths towards the right). The exponentially decreasing
Wien part of the spectrum is visible on the left, the Rayleigh—
Jeans part on the right. The shape of the spectrum in the
Rayleigh—Jeans part is independent of the temperature, which
is determining the amplitude however

exact equation. In the other limiting case of very high
frequencies, hpy > kg T, the exponential factor in the
denominator in (A.13) becomes very much larger than
unity, so that we obtain
2h !
By(T) ~ BY(7) = 20 cmewior (A.18)
called the Wien approximation of the Planck function.
The energy density of blackbody radiation depends
only on the temperature, of course, and is calculated by
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integration over the Planck function,

o0
4 4
y = i/@g,(ﬂ =L BIy=aT*, (A19)
C C
0

where we defined the frequency-integrated Planck
function
oo

B(T) =/dv B.(T)= 2574 (A.20)
4
0
and where the constant a has the value
85kt
=B =756 10" ergem™ K. (A21)
15¢3h3

The flux which is emitted by the surface of a blackbody
per unit area is given by
o0 o0
F =/dv Fo=m / dv B(T) = aB(T) = o5 T* ,
0 0
(A.22)
where the Stefan—Boltzmann constant osg has a value
of
ac Znsk‘é
Osp = — =
4 15¢%h;
=567 x 105 ergem™ K *s™! .

(A.23)

A.4 The Magnitude Scale

Optical astronomy was being conducted well before
methods of quantitative measurements became avail-
able. The brightness of stars had been cataloged more
than 2000 years ago, and their observation goes back
as far as the ancient world. Stars were classified into
magnitudes, assigning a magnitude of 1 to the brightest
stars and higher magnitudes to the fainter ones. Since
the apparent magnitude as perceived by the human eye
scales roughly logarithmically with the radiation flux
(which is also the case for our hearing), the magni-
tude scale represents a logarithmic flux scale. To link
these visually determined magnitudes in historical cat-
alogs to a quantitative measure, the magnitude system
has been retained in optical astronomy, although with

a precise definition. Since no historical astronomical
observations have been conducted in other wavelength
ranges, because these are not accessible to the unaided
eye, only optical astronomy has to bear the historical
burden of the magnitude system.

A.4.1 Apparent Magnitude

We start with a relative system of flux measurements
by considering two sources with fluxes §; and S,. The
apparent magnitudes of the two sources, m; and m,
then behave according to

Sy S ,
my—my =—25 log <S—'> ; S—; = 10704m—m)
2
(A.24)

This means that the brighter source has a smaller ap-
parent magnitude than the fainter one: the larger the
apparent magnitude, the fainter the source.! The fac-
tor of 2.5 in this definition is chosen so as to yield the
best agreement of the magnitude system with the visu-
ally determined magnitudes. A difference of |Am| = |
in this system corresponds to a flux ratio of ~ 2.51, and
a flux ratio of a factor 10 or 100 corresponds to 2.5 or 5
magnitudes, respectively.

A.4.2 Filters and Colors

Since optical observations are performed using a com-
bination of a filter and a detector system, and since the
flux ratios depend, in general, on the choice of the filter
(because the spectral energy distribution of the sources
may be different), apparent magnitudes are defined for
each of these filters. The most common filters are shown
in Fig. A.2 and listed in Table A.1, together with their
characteristic wavelengths and the widths of their trans-
mission curves. The apparent magnitude for a filter X is
defined as my, frequently written as X. Hence, for the
B-band filter, mp = B.

Next, we need to specify how the magnitudes mea-
sured in different filters are related to each other, in
order to define the color indices of sources. For this

10f course, this convention is confusing, particularly to someone just
becoming familiar with astronomy, and it frequently causes confusion
and errors, as well as problems in the communication with non-
astronomers — but we have to get along with that.
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Fig. A.2. Transmission curves of various
filter-detector systems. From top to bot-
tom: the filters of the NICMOS camera and

1 the WFPC2 on-board HST, the Washing-
" ton filter system, the filters of the EMMI

1 instrument at ESO’s NTT, the filters of
the WFT at the ESO/MPG 2.2-m telescope
.1 and those of the SOFI instrument at the

"3 NTT, and the Johnson—Cousins filters. In
the bottom diagram, the spectra of three
stars with different effective temperatures
are displayed
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Table A.1. For some of the best-established filter systems — Johnson, Stromgren, and the filters of the Sloan Digital Sky
Surveys — the central (more precisely, the effective) wavelengths and the widths of the filters are listed

Johnson U B v R I ] H K L M

Ret (nmy 367 436 545 638 . 797 1220 1630 2190 3450 4‘750

An(om) 66 94 85 160 149 213 07 39 72 460
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e () 349 411 467 547 489 480
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At () 354 - 477 63 762 913
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purpose, a particular class of stars is used, main-
sequence stars of spectral type A0, of which the star
Vega is an archetype. For such a star, by definition,
U=B=V=R=I=..ie, every color index for
such a star is defined to be zero.

For a more precise definition, let Tx(v) be the
transmission curve of the filter-detector system. Tx(v)
specifies which fraction of the incoming photons with
frequency v are registered by the detector, The apparent
magnitude of a source with spectral flux S, is then

fdl) TX(V) Sv
[ dv Tx(v)

where the constant needs to be determined from
reference stars.

Another commonly used definition of magnitudes
is the AB system. In contrast to the Vega mag-
nitudes, no stellar spectral energy distribution is
used as a reference here, but instead one with
a constant flux at all frequencies, S = $AB =
2.89 x 1072 ergs™' cm™2Hz™". This value has been
chosen such that AQ stars like Vega have the same mag-
nitude in the original Johnson V-band as they have in
the AB system, my® = my. With (A.25), one obtains
for the conversion between the two systems

25 log [ L9 Tx () S3°
e . Og —-———e__
fdv Tx(v) S\Y e

= MAB—Vega -

my = —2.5log ( ) +const., (A.25)

AB Vega
My —my" =

(A.26)

For the filters at the ESO Wide-Field Imager, which
are designed to resemble the Johnson set of filters, the
following prescriptions are then to be applied: Upp =
Uvega +0.80; Bap = Bvegy — 0.11; Vap = Viegy; Rap =
RVega -+ 0. 19, ]AB = ]Vega +0.59.

A.4.3 Absolute Magnitude

The apparent magnitude of a source does not in itself tell
us anything about its luminosity, since for the determi-
nation of the latter we also need to know its distance D
in addition to the radiative flux. Let L, be the specific
luminosity of a source, i.e., the energy emitted per unit
time and per unit frequency interval, then the flux is
given by (note that from here on we switch back to the

notation where S denotes the flux, which was denoted
by F earlier in this appendix)

L,

v W s
where we implicitly assumed that the source emits
isotropically. Having the apparent magnitude as a mea-
sure for S, (at the frequency v defined by the filter
which is applied), it is desirable to have a similar mea-
sure for L,, specifying the physical properties of the
source itself. For this purpose, the absolute magnitude
is introduced, denoted as My, where X refers to the
filter under consideration. By definition, My is equal
to the apparent magnitude of a source if it were to
be located at a distance of 10 pc from us. The abso-
lute magnitude of a source is thus independent of its
distance, in contrast to the apparent magnitude. With
(A.27) we find for the relation of apparent to absolute
magnitude

(A.27)

mX—MX:510g<—2>—55u, (A.28)
1 pc

where we have defined the distance modulus W in the
final step. Hence, the latter is a logarithmic measure of
the distance of a source: & =0 for D = 10pc, =10
for D= 1kpe, and u =25 for D=1 Mpec. The dif-
ference between apparent and absolute magnitude is
independent of the filter choice, and it equals the dis-
tance modulus if no extinction is present. In general, this
difference is modified by the filter-dependent extinction
coefficient — see Sect. 2.2 4.

A.4.4 Bolometric Parameters

The total luminosity L of a source is the integral
of the specific luminosity L, over all frequencies.
Accordingly, the total flux S of a source is the frequency-
integrated specific flux S,. The apparent bolometric
magnitude my, is defined as a logarithmic measure of
the total flux,

Mpor = —2.51og S+ const. , (A.29)

where here the constant is also determined from ref-
erence stars. Accordingly, the absolute bolometric
magnitude is defined by means of the distance mod-
ulus, as in (A.28). The absolute bolometric magnitude
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depends on the bolometric luminosity L of a source via

Myt = —2.5log L + const. (A.30)

The constant can be fixed, e.g., by using the parame-
ters of the Sun: its apparent bolometric magnitude is
Mepol = —26.83, and the distance of one Astronomical
Unit corresponds to a distance modulus of p=-3147.
With these values, the absolute bolometric magnitude

of the Sun becomes
Mopol = Meopo — . = 4.74 | (A31)

so that (A.30) can be written as

L
Myt =4.74 -2 510g (—) , (A.32)
Lo
and the luminosity of the Sun is then
Lo=385x10¥ergs™! . (A.33)

The direct relation between holometric magnitude and
luminosity of a source can hardly be exploited in prac-
tice, because the apparent bolometric magnitude (or the

flux §) of a source cannot be observed in most cases. For
observations of a source from the ground, only a lim-
ited window of frequencies is accessible. Nevertheless,
in these cases one also likes to quantify the total lumi-
nosity of a source. For sources for which the spectrum
is assumed to be known, like for many stars, the flux
from observations at optical wavelengths can be extrap-
olated to larger and smaller wavelengths, and so m,
can be estimated. For galaxies or AGNSs, which have
a much broader spectral distribution and which show
much more variation between the different objects, this
is not feasible. In these cases, the flux of a source in
a particular frequency range is compared to the flux
the Sun would have at the same distance and in the
same spectral range. If My is the absolute magnitude of
a source measured in the filter X, the X-band luminosity

of this source is defined as
Ly =10704Mx=Mox) g (A.34)

Thus, when speaking of, say, the “blue luminosity of
a galaxy”, this is to be understood as defined in (A.34).
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In this appendix, we will summarize the most important
properties of stars as they are required for understanding
the contents of this book. Of course, this brief overview
cannot replace the study of other textbooks in which the
physics of stars is covered in much more detail.

B.1 The Parameters of Stars

To a good approximation, stars are gas spheres, in the
cores of which light atomic nuclei are transformed into
heavier ones (mainly hydrogen into helium) by ther-
monuclear processes, thereby producing energy. The
external appearance of a star is predominantly character-
ized by its radius R and its characteristic temperature 7.
The properties of a star depend mainly on its mass M.

In a first approximation, the spectral energy distri-
bution of the emission from a star can be described
by a blackbody spectrum. This means that the specific
intensity I, is given by a Planck spectrum (A.13) in
this approximation. The fuminosity L of a star is the
energy radiated per unit time. If the spectrum of star
was described by a Planck spectrum, the luminosity
would depend on the temperature and on the radius
according to

L=47R’os5 T*, (B.1)

where (A.22) was applied. However, the spectra of stars
deviate from that of a blackbody (see Fig.3.47). One
defines the effective temperature Te of a star as the
temperature a blackbody of the same radius would need
to have to emit the same luminosity as the star, thus

L
47R?
The luminosities of stars cover a huge range; the weak-
est are a factor ~ 10 times less luminous than the Sun,
whereas the brightest emit ~ 107 times as much en-
ergy per unit time as the Sun. This big difference in
luminosity is caused either by a variation in radius or
by different temperatures. We know from the colors of
stars that they have different temperatures: there are
blue stars which are considerably hotter than the Sun,
and red stars that are very much cooler. The temper-
ature of a star can be estimated from its color. From

osg Th = (B.2)

the flux ratio at two different wavelengths or, equiva-
lently, from the color index X —Y =my —my in two
filters X and Y, the temperature T, is determined such
that a blackbody at T, would have the same color in-
dex. T, is called the color temperature of a star. If the
spectrum of a star was a Planck spectrum, then the
equality T, = T would hold, but in general these two
temperatures differ.

B.2 Spectral Class, Luminosity Class,
and the Hertzsprung—Russell
Diagram

The spectra of stars can be classified according to the
atomic (and, in cool stars, also molecular) spectral lines
that are present. Based on the line strengths and their
ratios, the Harvard sequence of stellar spectra was intro-
duced. These spectral classes follow a sequence that is
denoted by the letters O, B, A, F, G, K, M; besides these,
some other spectral classes exist that will not be men-
tioned here. The sequence corresponds to a sequence
of color temperature of stars: Ostars are particularly
hot, around 50 000 K, M stars very much cooler with
Tc ~ 3500 K. For a finer classification, each spectral
class is supplemented by a number between 0 and 9. An
Al star has a spectrum very similar to that of an AQ star,
whereas an A5 star has as many features in common
with an AQ star as with an FO star.

Plotting the spectral type versus the absolute magni-
tude for those stars for which the distance and hence
the absolute magnitude can be determined, a strik-
ing distribution of stars becomes apparent in such
a Hertzsprung—Russell diagram (HRD). Instead of the
spectral class, one may also plot the color index of the
stars, typically B~V or V —I. The resulting color-
magnitude diagram (CMD) is essentially equivalent to
an HRD, but is based solely on photometric data. A dif-
ferent but very similar diagram plots the luminosity
versus the effective temperature.

In Fig.B.1, a color—magnitude diagram is plotted,
compiled from data observed by the HIPPARCOS satel-
lite. Instead of filling the two-dimensional parameter
space rather uniformly, characteristic regions exist in
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Fig.B.1. Color-magnitude diagram for 41453 individual
stars, whose parallaxes were determined by the HIPPARCOS
satellite with an accuracy of better than 20%. Since the stars
shown here are subject to unavoidable strong selection effects
favoring nearby and luminous stars, the relative number den-
sity of stars is not representative of their true abundance. In
particular, the lower main sequence is much more densely
populated than is visible in this diagram

such color-magnitude diagrams in which nearly all stars
are located. Most stars can be found in a thin band called
the main sequence. It extends from early spectral types
(O, B) with high luminosities (“top left”) down to late
spectral types (K, M) with low luminosities (“bottom
right”). Branching off from this main sequence towards
the “top right” is the domain of red giants, and below the
main sequence, at early spectral types and very much
lower luminosities than on the main sequence itself, we
have the domain of white dwarfs. The fact that most
stars are arranged along a one-dimensional sequence —
the main sequence — is probably one of the most impor-
tant discoveries in astronomy, because it tells us that the
properties of stars are determined basically by a single
parameter: their mass.

Since stars exist which have, for the same spectral
type and hence the same color temperature (and roughly
the same effective temperature), very different lumi-
nosities, we can deduce immediately that these stars
have different radii, as can be read from (B.2). There-
fore, stars on the red giant branch, with their much
higher luminosities compared to main-sequence stars
of the same spectral class, have a very much larger ra-
dius than the corresponding main-sequence stars. This
size effect is also observed spectroscopically: the grav-
itational acceleration on the surface of a star (surface

gravity) is
(B.3)

We know from models of stellar atmospheres that the
width of spectral lines depends on the gravitational ac-
celeration on the star’s surface: the lower the surface
gravity, the narrower the stellar absorption lines. Hence,
a relation exists between the line width and the stellar
radius. Since the radius of a star — for a fixed spectral
type or effective temperature — specifies the luminos-
ity, this luminosity can be derived from the width of the
lines. In order to calibrate this relation, stars of known
distance are required.

Based on the width of spectral lines, stars are clas-
sified into luminosity classes: stars of luminosity class [
are called supergiants, those of luminosity class III are
giants, main-sequence stars are denoted as dwarfs and
belong to luminosity class V; in addition, the classifi-
cation can be further broken down into bright giants
(II), subgiants (IV), and subdwarfs (VI). Any star in the
Hertzsprung—Russell diagram can be assigned a lumi-
nosity class and a spectral class (Fig. B.2). The Sun is
a G2 star of luminosity class V.

If the distance of a star, and thus its luminosity, is
known, and if in addition its surface gravity can be
derived from the line width, we obtain the stellar mass
from these parameters. By doing so, it turns out that for
main-sequence stars the luminosity is a steep function
of the stellar mass, approximately described by

L M\

Lo <ME> '
Therefore, a main-sequence star of M = 10M is
~ 3000 times more luminous than our Sun.

(B.4)
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Fig. B.2. Schematic color-magnitude diagram in which the
spectral types and Tuminosity classes are indicated

B.3 Structure and Evolution of Stars

To a very good approximation, stars are spherically sym-
metric. Therefore, the structure of a star is described by
the radial profile of the parameters of its stellar plasma.
These are density, pressure, temperature, and chemical
composition of the matter. During almost the full life-
time of a star, the plasma is in hydrostatic equilibrium,
so that pressure forces and gravitational forces are of
equal magnitude and directed in opposite directions, so
as to balance each other.

The density and temperature are sufficiently high in
the center of a star that thermonuclear reactions are ig-
nited. In main-sequence stars, hydrogen is fused into
helium, thus four protons are combined into one *He
nucleus. For every helium nucleus that is produced this
way, 26.73 MeV of energy are released. Part of this
energy is emitted in the form of neutrinos which can
escape unobstructed from the star due to their very

low cross-section.! The energy production rate is ap-
proximately proportional to T* for temperatures below
about 15 x 106 K, at which the reaction follows the
so-called pp-chain. At higher temperatures, another re-
action chain starts to contribute, the so-called CNO
cycle, with an energy production rate which is much
more strongly dependent on temperature — roughly
proportional to T%°.

The energy generated in the interior of a star is trans-
ported outwards, where it is then released in the form
of electromagnetic radiation. This energy transport may
take place in two different ways: first, by radiation trans-
port, and second, it can be transported by macroscopic
flows of the stellar plasma. This second mechanism of
energy transport is called convection; here, hot elements
of the gas rise upwards, driven by buoyancy, and at the
same time cool ones sink downwards. The process is
similar to that observed in heating water on a stove.
Which of the two processes is responsible for the en-
ergy transport depends on the temperature profile inside
the star. The intervals in a star’s radius in which energy
transport takes place via convection are called convec-
tion zones. Since in convection zones stellar material is
subject to mixing, the chemical composition is homoge-
neous there. In particular, chemical elements produced
by nuclear fusion are transported through the star by
convection.

Stars begin their lives with a homogeneous chemi-
cal composition, resulting from the composition of the
molecular cloud out of which they are formed. If their
mass exceeds about 0.08 M, the temperature and pres-
sure in their core are sufficient to ignite the fusion of
hydrogen into helium. Gas spheres with a mass below
~ 0.08 M, will not satisfy these conditions, hence these
objects — they are called brown dwarfs — are not stars in

The detection of neutrinos from the Sun in terrestrial detectors was
the final proof for the energy production mechanism being nuclear
fusion. However, the measured rate of electron neutrinos from the
Sun was only half as large as expected from Solar models. This Solar
neutrino problem kept physicists and astrophysicists busy for decades.
It was a first indication of neutrinos having a finite rest mass — only
in this case could electron neutrinos transform into another sort of
neutrino along the way from the Sun to us. Recently, these neutrino
oscillations were confirmed: neutrinos have a very small but finite rest
mass. For their research in the field of Solar neutrinos, Raymond Davis
and Masatoshi Koshiba were awarded with one half of the Nobel Prize
in Physics in 2002, The other half was awarded to Ricardo Giacconi
for his pioneering work in the field of X-ray astronomy.
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Fig. B.3. Theoretical temperature-luminos-
ity diagram of stars. The solid curve is the
zero age main sequence (ZAMS), on which
stars ignite the burning of hydrogen in their
cores. The evolutionary tracks of these stars
are indicated by the various lines which are

labeled with the stellar mass. The hatched

areas mark phases in which the evolution

proceeds only slowly, so that many stars are
observed to be in these areas
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a proper sense.” At the onset of nuclear fusion, the star
is located on the zero-age main sequence (ZAMS) in the
HRD (see Fig. B.3). The energy production by fusion
of hydrogen into helium alters the chemical composi-
tion in the stellar interior; the abundance of hydrogen

2If the mass of a brown dwarf exceeds ~ 0.0] 3M¢ ., the central density
and temperature are high enough to enable the fusion of deuterium
(heavy hydrogen) into helium. However, the abundance of deu-
terium is smaller by several orders of magnitude than that of normal
hydrogen, rendering the fuel reservoir of a brown dwart very small.

36

log Teff

decreases by the same rate as the abundance of helium
increases. As a consequence, the duration of this phase
of central hydrogen burning is limited. As a rough es-
timate, the conditions in a star will change noticeably
when about 10% of its hydrogen is used up. Based on
this criterion, the lifetime of a star on the main sequence
can now be estimated. The total energy produced in this
phase can be written as

Enms =0.1 x Mc? x0.007, (B.5)




B.3 Structure and Evolution of Stars

where Mc? is the rest-mass energy of the star, of which
a fraction of 0.1 is fused into helium, which is supposed
to occur with an efficiency of 0.007. Phrased differently,
in the fusion of four protons into one helium nucleus, an
energy of ~ 0.007 x 4mpc2 is generated, with m, denot-
ing the proton mass. In particular, (B.5) states that the
total energy produced during this main-sequence phase
is proportional to the mass of the star. In addition, we
know from (B.4) that the luminosity is a steep function
of the stellar mass. The lifetime of a star on the main se-
quence can then be estimated by equating the available
energy Eps with the product of luminosity and lifetime.
This yields
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L L/Lo

25
~8x 10° *—M— yr.
M

o]

Using this argument, we observe that stars of higher
mass conclude their lives on the main sequence much
faster than stars of lower mass. The Sun will remain on
the main sequence for about eight to ten billion years,
with about half of this time being over already. In com-
parison, very luminous stars, like O and B stars, will
have a lifetime on the main sequence of only a few mil-
lion years before they have exhausted their hydrogen
fuel.

In the course of their evolution on the main sequence,
stars move away only slightly from the ZAMS in the
HRD, towards somewhat higher luminosities and lower
effective temperatures. In addition, the massive stars in
particular can lose part of their initial mass by stellar
winds. The evolution after the main-sequence phase de-
pends on the stellar mass. Stars of very low mass, M <
0.7M,, have a lifetime on the main sequence which
is longer than the age of the Universe, therefore they
cannot have moved away from the main sequence yet.

For massive stars, M = 2.5M, central hydrogen
burning is first followed by a relatively brief phase in
which the fusion of hydrogen into helium takes place
in a shell outside the center of the star. During this
phase, the star quickly moves to the “right” in the
HRD, towards lower temperatures, and thereby expands
strongly. After this phase, the density and temperature

(B.6)
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in the center rise so much as to ignite the fusion of
helium into carbon. A central helium-burning zone will
then establish itself, in addition to the source in the shell
where hydrogen is burned. As soon as the helium in the
core has been exhausted, a second shell source will form
fusing helium. In this stage, the star will become a red
giant or supergiant, ejecting part of its mass into the
ISM in the form of stellar winds. Its subsequent evolu-
tionary path depends on this mass loss. A star with an
initial mass M < 8M will evolve into a white dwarf,
which will be discussed further below.

For stars with initial mass M < 2.5M¢, the helium
burning in the core occurs explosively, in a so-called he-
Hum flash. A large fraction of the stellar mass is ejected
in the course of this flash, after which a new stable equi-
librium configuration is established, with a helium shell
source burning beside the hydrogen-burning shell. Ex-
panding its radius, the star will evolve into ared giant or
supergiant and move along the asymptotic giant branch
(AGB) in the HRD.

The configuration in the helium shell source is unsta-
ble, so that its burning will occur in the form of pulses.
After some time, this will lead to the ejection of the
outer envelope which then becomes visible as a plan-
etary nebula. The remaining central star moves to the
left in the HRD, i.e., its temperature rises considerably
(to more than 10° K). Finally, its radius gets smaller
by several orders of magnitude, so that the the stars
move downwards in the HRD, thereby slightly reduc-
ing its temperature: a white dwarf is born, with a mass
of about 0.6 M, and a radius roughly corresponding to
that of the Earth.

If the initial mass of the star is 2> 8 M, the tempera-
ture and density at its center become so large that carbon
can also be fused. Subsequent stellar evolution towards
a core-collapse supernova is described in Sect. 2.3.2.

The individual phases of stellar evolution have very
different time-scales. As a consequence, stars pass
through certain regions in the HRD very quickly, and for
this reason stars at those evolutionary stages are never or
only rarely found in the HRD. By contrast, long-lasting
evolutionary stages like the main sequence or the red
giant branch exist, with those regions in an observed
HRD being populated by numerous stars.




C. Units and Constants

In this book, we consistently used, besides astro-
nomical units, the Gaussian cgs system of units,
with lengths measured in c¢m, masses in g, and en-
ergies in erg. This is the commonly used system
of units in astronomy. In these units, the speed of
light is ¢=2.998 x 10" cms™!, the masses of pro-
tons, neutrons, and electrons are m, = 1.673 x 10~ g,
my, =1.675x 107> g, and m. =9.109 x 1072 g, re-
spectively.

Frequently used units of length in astronomy
include the Astronomical Unit, thus the average
separation between the Earth and the Sun, where
1 AU = 1.496 x 10'3 cm, and the parsec (see Sect. 2.2.1
for the definition), | pc=3.086x 10"®cm. A year
has 1 yr =3.156 x 107 s. In addition, masses are typi-
cally specified in Solar masses, 1 Mg = 1.989 x 107 ¢,
and the bolometric luminosity of the Sun is
Lo =3.846 x 10 ergs™.

In cgs units, the value of the elementary charge
is e=4.803x 107" cm??g!/2s~!, and the unit of
the magnetic field strength is one Gauss, where
1G=1g"?em™2s7! = lerg/?ecm™/2. One of the

very convenient properties of cgs units is that the en-
ergy density of the magnetic field in these units is given
by pg = B?/(8m) — the reader may check that the units
of this equation is consistent.

X-ray astronomers measure energies in electron
Volts, where 1 eV = 1.602 x 10'2 erg. Temperatures can
also be measured in units of energy, because kg T has
the dimension of energy. They are related according
to 1eV =1.161 x 10* kg K. Since we always use the
Boltzmann constant kg in combination with a tem-
perature, its actual value is never needed. The same
holds for Newton’s constant of gravity which is al-
ways used in combination with a mass. Here one has
G M™% =1.495x 10° cm.

The frequency of a photon is linked to its energy ac-
cording to hpv = E, and we have the relation | eV h;l =
2418 x 10571 =2.418 x 10'* Hz. Accordingly, we
can write the wavelength A = ¢/v = hpc/E in the form

h 4
AP 12400 % 10~ cm = 12400 A .
eV

Peter Schneider, Units and Constants.
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