Heliocentric Models and Modern Astronomy

Heliocentric models and European Renaissance

- 3000 BC; Chinese astronomy
- 2700-2100 BC; Egyptians \& Babylonians
- 625 BC-150 AD; Greek scientists and geocentric models (Thales, Pythagoras, Democritus, Plato, Eudoxus, Aristotle, [Aristarchus], Apollonius, Hipparcus, Ptolemy)
- 300 BC; Expansion of Greek empire into Middle East (Egypt, Mesopotoamia)
- 300 BC-400 AD; Library of Alexandria
- 600-800 AD ; House of Baghdad; compilation of knowledge by Arabs from Egyptians, Greeks, Hindu, Chinese. Development of arithmetic.
- 800-1400 ; Knowledge compiled by Arabs spreads throughout the Byzantine Empire
- 1453 ; Capital of Byzantine Empire falls to the Turks. Eastern scholars move to Europe transferring knowledgeEuropean Renaissannce
- 1473-1642 ; Heliocentric models and birth of modern astronomy : radical change in only 200 years (Copernicus, Brahe, Kepler, Galilei)
- 1642-1747 Newton: Laws of gravity
- 1905-1915 Einstein's Special and General Theory of Relativity

North

Heliocentric Models and Modern Astronomy

Apparent retrograde motion of Mars easily explained in Heliocentric model

Heliocentric Models and Modern Astronomy

Naked-eye observatory
of Tycho Brahe

Heliocentric Models and Modern Astronomy

distant stars
0
O
0

- Stellar parallax = apparent shift of a nearby star against backround of distant stars ,as seen from Earth, due to the motion of Earth about Sun
- Too small to see in naked-eye observation by Tycho

Heliocentric Models and Modern Astronomy

Johannes Kepler 1571-1630

Kepler's laws of heliocentric planetary motions

Ellipse = Oval defined by 2 points called foci as above Distance from planet to focus varies; aphelion=furthest, perihelion=closest Semimajor axis =a Semiminor axis=b. For ellipse b/a<1
Circle $=$ Defined by one focus or center $b=a=$ radius of circle; For circle $b / a=1$

Kepler's laws of heliocentric planetary motions

Law I: Orbit of each planet about the Sun is an ellipse with the Sun at one focus

Law II : Line joining Sun and planet sweeps out equal areas in equal areas of time
planet moves slower when it is farther from Sun
Max speed at aphelion

Kepler's laws of heliocentric planetary motions

Law III : Planet moves around Sun such that they obey the relationship

$$
(\text { Period } P \text { in years })^{2}=(\text { Semi-major aixs a in } A U)^{3}
$$

planet moves slower when it is farther from Sun can use observed Period P infer a, and hence mean orbital speed in km/s

Heliocentric Models and Modern Astronomy

Kepler's laws of heliocentric planetary motions consistent will all of Tycho Brahe's data but obtained very strong support only after vindication by accurate + unprecedented observations taken by Galileo Galilei with the recently invented telescope

Galileo Galilei
1564-1642

Heliocentric Models and Modern Astronomy

- Observations of Venus phases (going through full phases new-crescent-full rather than only new-to -crescent phases) by Galileo implies Venus orbits Sun not Earth
- Imperfections on the surface of the Moon and sunspots on Sun observed by Galileo Heavenly bodies are not perfect need not move in perfect shapes=circles
- Moon of Jupiter orbit Jupiter and NOT Earth not everything revolves around E

