

Astro 301/ Spring 2005 (46690)

Introduction to Astronomy

Instructor: Professor Shardha Jogee TAs: Nick Sterling & Nairn Baliber MWF 12-1 Welch 3.502 Lecture 17+18+19; MWF Feb 28, Mar 1,4

Lecture 17 :Astronomy Picture of the Day

Spectrum of the Sun produced by passing the Sun's light through a prism device Thermal spectrum for T=5800 K from photosphere.

Dark patches= absorption lines imprinted onto spectrum as it goes through thin layers of gas at colder temperature

Lecture 17: Announcements

- Homework 2 due today by noon. Pick up Hwk 3 and your graded Hwk1
- Good job on Hwk1 : 25% A, 28% B, 17% C
- Exam on Wed Mar 9 : Makes up 20% of total grade . See webpage for a description of the exam format

http://www.as.utexas.edu/~sj/a301-sp05.html

- Review session on Wed Mar 2 from 6.30 to 8.00 pm in RLM 5.118.
 Bring your homeworks 1+2+3 for discussion
- Students below: please see me after class or in my office RLM 16.224 L. Speyer, K. Berastequi, G. Talbert, W. Terell

Properties of the Sun and Other Stars

Topics to be covered in class

- Nature of the Sun
- Mass, Temperature, Radius, Luminosity, Composition
- Structure of the Sun.
- Why is the photosphere considered the surface?

Structure of the Sun

Core, radiation zone, convection zone, photosphere = 'surface', chromoshpere, corona

Spectrum of the Sun

Solar spectrum made up of 3 components

Thermal spectrum from photosphere at 5800 K peaking at yellow λ s

- + Absorption lines (e.g., from H,He, Sodium) from which layers?
- + Emission lines from (e.g., from Calcium)from which layers?

Fraunhoffer in 1814 already observed absorption lines (from H and Sodium) in solar spectrum

Convection Zone of the Sun

Convection zone : Energy transported by motion of hot gas outward and motion of cold gas inwards à vibrations/churning of Sun's surface appearance

Doppler map of the Sun traces churning motions due to convection of gas in CZ Blueshift = due to outward moving or 'rising' hot gas Redshift = due to inward moving or 'failling' cold gas

Chromosphere of the Sun

Chromosphere: T=10,000 K. Emits most of Sun's ultraviolet rays

UV image (SOHO mission): giant prominence 20 times size of Earth from gas at 10⁴ K.

UV light emitted by hydrogen (from NASA' TRACE mission) traces solar flare

Corona of the Sun

Corona: T=10^6 K. Emits most of Sun's X-rays

X-ray image (Yonkoh Space Observatory) Hot million-degree gas in Solar corona

X-ray image (NASA's TRACE mission): hot million degree gas trapped in magnetic field