Announcements L11

- http://www.as.utexas.edu/~sj/a301-sp05.html
- Selected notes from lectures 8+9+10 online
- Homework assignment due Monday by noon No late HW accepted.
- Help available during office hours

Nick Sterling out of town. Contact Nairn Baliber or myself

Some topics to be covered....

See class notes

- Centripetal force.
- Orbiting in free fall around the Earth
- Lunar tides
- Work, Energy, Power.
- Forms of Energy. Mass-Energy equivalence.
- The Nature of Light

Centripetal Force

Centripetal force $\boldsymbol{F}=$ force needed to keep object of mass M orbiting in a circle of radius R at speed v
Magnitude of centripetal force $=\mathrm{Ma}=\mathrm{Mv}^{2} / \mathrm{R}$

Orbiting in Free Fall around Earth vs Escaping

In-class: Canonball movie

Center of Mass of 2 (orbiting) Bodies

Two Stars of Equal Mass

Star 1 Is More Massive Than Star 2

Sun Is Much More Massive Than Planet

Sun
planet

Tides: Motion of Earth \& Centripetal vs Gravitational forces

tidal bulge opposite Moon

Not to scale! The real tidal bulge raises the oceans by only about 2 meters.

Why do we get tidal bulges of about same magnitude on both sides of Earth? Why do we get 'high' tides twice a day?

Spring and Neap Tides

spring tides

to Sun | new |
| :---: |
| moon |

- Spring tides:

At new and Full moon, tidal forces from Moon and Sun reinforce each other leading to enhanced tides

- Neap tides

Force from Sun perpendicular to Moon's force on E

Newton's laws of gravity : Explain + Generalise Kepler's laws

- Orbital paths allowed by law of gravity ellipses, hyperpolas, parabolas
- Ellipses = only orbits that are bound

Work and Different forms of Energy

Energy and Work

Table 4.1 Energy Comparisons

Item	Energy (joules)
Average daytime solar energy striking Earth, per m² per second	1.3×10^{3}
Energy released by metabolism of one average candy bar	1×10^{6}
Energy needed for 1 hour of walking (adult)	1×10^{6}
Kinetic energy of average car traveling at 60 mi/hr	1×10^{6}
Daily energy needs of average adult	1×10^{7}
Energy released by burning 1 liter of oil	1.2×10^{7}
Energy released by fission of 1 kg of uranium-235	5.6×10^{13}
Energy released by fusion of hydrogen in 1 liter of water	7×10^{13}
Energy released by 1-megaton H-bomb	5×10^{15}
Energy released by major earthquake (magnitude 8.0)	2.5×10^{16}
Annual U.S. energy consumption	10^{20}
Annual energy generation of Sun	10^{34}
Energy released by supernova (explosion of a star)	$10^{44}-10^{46}$

Forms of Energy

Kinetic energy
Thermal Energy
Radiative energy (light)
Gravitational potential energy
Sound energy

