Announcements L11

- http://www.as.utexas.edu/~sj/a301-sp05.html
- Selected notes from lectures 8+9+10 online
- Homework assignment due Monday by noon No late HW accepted.
- Help available during office hours Nick Sterling out of town. Contact Nairn Baliber or myself

Some topics to be covered....

See class notes

- Centripetal force.
- Orbiting in free fall around the Earth
- Lunar tides
- Work, Energy, Power.
- Forms of Energy. Mass-Energy equivalence.
- The Nature of Light

Centripetal Force

Centripetal force F = force needed to keep object of mass M orbiting in a circle of radius R at speed v Magnitude of centripetal force = M a = M v²/R **Orbiting in Free Fall around Earth** vs Escaping

In-class : Canonball movie

Center of Mass of 2 (orbiting) Bodies

Star 1 Is More Massive Than Star 2

Sun Is Much More Massive Than Planet

Tides: Motion of Earth & Centripetal vs Gravitational forces

Why do we get tidal bulges of about same magnitude on both sides of Earth? Why do we get 'high' tides twice a day?

Spring and Neap Tides

spring tides

9

quarter

moon

full moon

- Spring tides: At new and Full moon, tidal forces from Moon and Sun reinforce each other leading to enhanced tides

Neap tides
Force from Sun perpendicular
to Moon's force on E\

firstquarter moon

Newton's laws of gravity : Explain + Generalise Kepler's laws

- Orbital paths allowed by law of gravity ellipses, hyperpolas, parabolas
- Ellipses = only orbits that are bound

Work and Different forms of Energy

Energy and Work

ltem	Energy (joules)
Average daytime solar energy striking Earth, per m ² per second	$1.3 imes 10^3$
Energy released by metabolism of one average candy bar	$1 imes 10^{6}$
Energy needed for 1 hour of walking (adult)	$1 imes 10^{6}$
Kinetic energy of average car traveling at 60 mi/hr	$1 imes 10^6$
Daily energy needs of average adult	$1 imes 10^7$
Energy released by burning 1 liter of oil	$1.2 imes 10^7$
Energy released by fission of 1 kg of uranium-235	$5.6 imes10^{13}$
Energy released by fusion of hydrogen in 1 liter of water	$7 imes 10^{13}$
Energy released by 1-megaton H-bomb	$5 imes 10^{15}$
Energy released by major earthquake (magnitude 8.0)	$2.5 imes10^{16}$
Annual U.S. energy consumption	10 ²⁰
Annual energy generation of Sun	10 ³⁴
Energy released by supernova (explosion of a star)	$10^{44} - 10^{46}$

Table 4.1 Energy Comparisons

Forms of Energy

Kinetic energy Thermal Energy Radiative energy (light) Gravitational potential energy Sound energy