ASTRO 301 (50405): Laws, Formulas, and Constants

We will discuss the mathematical formulas below and the underlying concepts in class. These formulas and constants will be provided to you during the exams.

• The equivalence of mass and energy: If a mass m could be entirely converted into energy, then the amount of energy E produced would be

$$E = mc^2 (1)$$

where c = speed of light $= 3 \times 10^8 \text{ m s}^{-1}$. In other words, the total amount of energy E stored in a mass m is given by $E = mc^2$. In practice, the energy released from a mass m during fusion or other reactions is (fmc^2) , where f denotes the efficiency factor with which mass is converted into energy, and is well below 100 percent.

• The flux F received at a distance d from an object of luminosity L is directly proportional to the luminosity L and is inversely proportional to the square of the distance

$$F = \frac{L}{4\pi d^2} \tag{2}$$

• Wien's law: A star (or blackbody) emits the maximum flux in its continuum spectrum at a wavelength λ_{peak} that is inversely proportional to its surface temperature T:

$$\lambda_{\text{peak}} = \frac{W}{T},\tag{3}$$

where $W = \text{Wien's constant} = 2.9 \times 10^{-3} \text{ m K}.$

• Stefan- $Boltzmann\ law$: The total flux F_{surf} emitted at the surface of a star (or blackbody) over all wavelengths is proportional to the fourth power of its surface temperature T:

$$F_{\text{surf}} = \sigma T^4 \tag{4}$$

where $\sigma = \text{Stefan-Boltzmann constant} = 5.7 \times 10^{-8} \text{ J s}^{-1} \text{ m}^{-2} \text{ K}^{-4}$

• The energy E of a photon is inversely proportional to its wavelength λ and directly proportional to its frequency f:

$$E = \frac{hc}{\lambda} = hf \tag{5}$$

where h= Planck's constant = $6.6\times 10^{-34}~\mathrm{J~s}$; c= speed of light = $3\times 10^8~\mathrm{m~s^{-1}}$.

• Hubble's law states that on large scales, the expansion of the Universe causes galaxies separated by a large distance d to move away from each other at a speed v given by:

$$v = H_0 d \tag{6}$$

$$[v \text{ in km s}^{-1}] = [H_0 \text{ in km s}^{-1} \text{ Mly}^{-1}][d \text{ in Mly}]$$
 (7)

where H_0 = Hubble's constant = 70 km s⁻¹ Mpc⁻¹ = 21.5 km s⁻¹ Mly⁻¹.

• The Doppler redshift [blueshift] of a wave is the fractional increase [decrease] in its observed wavelength due to the relative motion of the emitting source away [toward] an observer.

Doppler shift =
$$\frac{(\lambda_{\text{obs}} - \lambda_{\text{rest}})}{\lambda_{\text{rest}}}$$
 (8)

where

 λ_{rest} = wavelength measured when the source is at rest w.r.t. the observer

 λ_{obs} c= wavelength measured when the source is moving w.r.t. the observer at relative speed v.

In the special case where the relative speed v of the source is well below the speed of light c, we can relate the Doppler shift to v by

Doppler shift =
$$\frac{(\lambda_{\text{obs}} - \lambda_{\text{rest}})}{\lambda_{\text{rest}}} = \frac{v}{c}$$
 (9)

where negative values of v denote the relative motion of the source toward the observer.