

Binaries

Binaries

Opportunities Sources & Sinks of E & L

Opportunities Sources & Sinks of E & <u>L</u>

Interaction

Opportunities Sources & Sinks of E & <u>L</u> Interaction - tidal

Sources & Sinks of E & L

Interaction - tidal

- thermodynamic

Sources & Sinks of E & L

Interaction - tidal

thermodynamic
mass transfer

Sources & Sinks of E & L

Interaction - tidal

•

- thermodynamic
 mass transfer
- Free mass! (for light)

Sources & Sinks of E & L

Interaction - tidal

thermodynamic
 mass transfer

Free mass! (for light)

More detailed classification

Sources & Sinks of E & L

Interaction - tidal

thermodynamic
 mass transfer

Free mass! (for light)

More detailed classification

Extra motion

Sources & Sinks of E & L

Interaction - tidal

thermodynamic
 mass transfer

Free mass! (for light)

More detailed classification

Extra motion

Inconveniences

Harder to model

Sources & Sinks of E & L

Interaction - tidal

thermodynamic
mass transfer

Free mass! (for light)

More detailed classification

Extra motion

Inconveniences

Harder to model

Time-evolving

Sources & Sinks of E & L

Interaction - tidal

- thermodynamic - mass transfer - mass transfer

Free mass! (for light)

More detailed classification

Extra motion

Inconveniences

Harder to model

Sources & Sinks of E & L

Interaction - tidal

- thermodynamic - mass transfer - mass transfer

Free mass! (for light)

More detailed classification

Extra motion

Inconveniences

Harder to model

Uncertain dynamics

Sources & Sinks of E & L

Interaction - tidal

- thermodynamic - mass transfer - mass transfer

Free mass! (for light)

More detailed classification

Extra motion

Inconveniences

Harder to model

Uncertain dynamics Higher dimensional fit

Sources & Sinks of E & L

Interaction - tidal

Time-evolving thermodynamic
mass transfer **Exotic systems**

Free mass! (for light)

More detailed classification

Extra motion

Binaries

Inconveniences

Harder to model

- **Uncertain dynamics**
- **Higher dimensional fit**
- **Bias on velocity and parallax**

Multiplicity

Binaries

Duchene & Kraus 2013

Multiplicity

Duchene & Kraus 2013

Raghavan et al. 2010

Gaia 2013-2025 (hopefully)

Boubert & Everall 2020

Boubert & Everall 2020

Г	21.	33	
_	21.	00	npleteness
_	20.	90	of $99\% \text{ con}$
_	20.	80	ide limit e
_	20.	70	agniti
F	20.	60	Ĩ
L	18.	90	

S. Klioner via Joe Callingham @AstroJoeC

S. Klioner via Joe Callingham @AstroJoeC

DR2 - 22 months (e)DR3 - 34 months

Same system, with different period (and semi-major axis)

Earth's motion System's motion

Same system, with different period (and semi-major axis)

Astrometry of unresolved binaries

$$q = \frac{M_B}{M_A}, \ l = \frac{L_B}{L_A}$$
$$r_M = \frac{q}{1+q}r, \ r_L = \frac{l}{1+l}r$$
$$\Delta = \frac{r_M - r_L}{r} = \frac{q - l}{(1+q)(1+l)}$$

Astrometry of unresolved binaries

$$q = \frac{M_B}{M_A}, \quad l = \frac{L_B}{L_A}$$
$$r_M = \frac{q}{1+q}r, \quad r_L = \frac{l}{1+l}r$$

$$\Delta = \frac{r_M - r_L}{r} = \frac{q - l}{(1 + q)(1 + l)}$$

Lower resolution (Larger distance)

Gaia's PSF >> Gaia's astrometric error

Astrometry of unresolved binaries

 $\Delta = \frac{r_M - r_L}{r} = \frac{q - l}{(1 + q)(1 + l)}$

Lower resolution (Larger distance)

Gaia's PSF >> Gaia's astrometric error

Gaia sees a single source, with combined properties

Located at the centre of light, orbiting the centre of mass

Same system, with different period (and semi-major axis)

Same system, with different period (and semi-major axis)

Fit for Position, Parallax & Proper Motion (5 parameters)

Fit for Position, Parallax & Proper Motion (5 parameters)

Fit for Position, Parallax & Proper Motion (5 parameters) & Error!

Fit for Position, Parallax & Proper Motion (5 parameters) & Error!

$$UWE_{obs} = \sqrt{\frac{\sum_{i}^{N_{obs}} (\alpha_{obs,i} - \alpha_{model,i})^2 + (\delta_{obs,i} - \delta_{model})^2}{\sigma_{ast}^2 (N_{obs} - 5)}}$$

Unit Weight Error - UWE

Belokurov, Penoyre et al. 2020

Fit for Position, Parallax & Proper Motion (5 parameters) & Error!

$$UWE_{obs} = \sqrt{\frac{\sum_{i}^{N_{obs}} (\alpha_{obs,i} - \alpha_{model,i})^2 + (\delta_{obs,i} - \delta_{model})^2}{\sigma_{ast}^2 (N_{obs} - 5)}}$$

Unit Weight Error - UWE

Fit for Position, Parallax & Proper Motion (5 parameters) & Error!

$$UWE_{obs} = \sqrt{\frac{\sum_{i}^{N_{obs}} (\alpha_{obs,i} - \alpha_{model,i})^2 + (\delta_{obs,i} - \delta_{model})^2}{\sigma_{ast}^2 (N_{obs} - 5)}}$$

$$UWE_{pred} = \sqrt{1 + \left(\frac{\delta\theta}{\sigma_{ast}}\right)^2}$$

 $\delta\theta \propto \Delta \varpi a$

Unit Weight Error - UWE

$$UWE_{pred} = \sqrt{1 + \left(\frac{\delta\theta}{\sigma_{ast}}\right)^2}$$

 $\delta\theta \propto \Delta \varpi a$

$$UWE_{pred} = \sqrt{1 + \left(\frac{\delta\theta}{\sigma_{ast}}\right)^2}$$

 $\delta\theta \propto \Delta \varpi a$

 $\delta\theta^* \propto N_{orb}^2 \Delta \varpi a \text{ for } N_{orb} < 1$

Gaia Astrometry Proper motion anomaly

Gaia Astrometry **Proper motion anomaly**

Kervella et al 2021

Gaia Astrometry Epoch astrometry fitting

Gaia Astrometry **Epoch astrometry fitting**

P = 850.84 ± 112.53 d $e = 0.37 \pm 0.15$ $T_{\rm P} = 145.68 \pm 68.64 ~\rm d$ $\alpha = 0.40^{+0.03}_{-0.03}$ mas $\omega = 63.22^{+13.91}_{-14.84} \deg$ $\Omega = 12.46^{+5.79}_{-5.38} \text{ deg}$ $i = 107.40^{+5.51}_{-5.58} \text{ deg}$

ESA/Gaia/DPAC/CU4-CU3, Johannes Sahlmann et al

Gaia Astrometry **Epoch astrometry fitting**

P = 850.84 ± 112.53 d $e = 0.37 \pm 0.15$ $T_{\rm P} = 145.68 \pm 68.64 ~\rm d$ $\alpha = 0.40^{+0.03}_{-0.03}$ mas $\omega = 63.22^{+13.91}_{-14.84} \deg$ $\Omega = 12.46^{+5.79}_{-5.38} \text{ deg}$ $i = 107.40^{+5.51}_{-5.58} \text{ deg}$

ESA/Gaia/DPAC/CU4-CU3, Johannes Sahlmann et al

Gaia Binaries

Includes spectroscopic measurements of bright stars

Few 100,000 multiple systems in DR3 (June 2022)

Astrometric orbits

Frédéric Arenou, EAS talk 2021

Gaia Binaries

Includes spectroscopic measurements of **bright stars**

Few 100,000 multiple systems in DR3 (June 2022)

Frédéric Arenou, EAS talk 2021

Binaries fundamentally change the behaviour of stellar populations

Binaries fundamentally change the behaviour of stellar populations

Astrometric binaries are already visible in their thousands, perhaps millions, with Gaia

Penoyre et al 2022

Binaries fundamentally change the behaviour of stellar populations

Astrometric binaries are already visible in their thousands, perhaps millions, with Gaia

More & better data is coming over the second half of the Gaia mission

n=170 Globular Clusters in (J, E) space

Malhan et al 2022

Binaries Eccentricity

Hwang et al. 2021

Changing astrometry eDR3 released in Dec 2020 **Essentially same** data as DR2, but half as long again tracks and fits from

astromet.py:

https://github.com/zpenoyre/astromet.py

0 -DR2 Star -10 -Single -10-2010 eDR3 0 --10 --20-100 Binar 0 -DR2 -10 --10llar 10 mas] K3 0 -Ð eD Dec N vo −10 --10-20

 δ RAcosDec [mas]

true diff.

fit diff.

1.0 -

fit results

 $\varpi = 9.995 \pm 0.045$ $\mu_{RAcosDec} = 8.218 \pm 0.099$ $\mu_{Dec} = 6.044 \pm 0.083$ UWE = 1.01

 $\varpi = 10.041 \pm 0.037$ $\mu_{RAcosDec} = 7.996 \pm 0.046$ $\mu_{Dec} = 6.052 \pm 0.033$ UWE = 1.0

 $\varpi = 8.9 \pm 0.11$ $\mu_{RAcosDec} = 7.65 \pm 0.25$ $\mu_{Dec} = 6.64 \pm 0.24$ UWE = 3.69

2.5

2.5

 $\varpi = 9.51 \pm 0.12$ $\mu_{RAcosDec} = 7.41 \pm 0.14$ $\mu_{Dec} = 5.82 \pm 0.1$ UWE = 3.75

Penoyre et al 2021 (submitted)

Simulating binaries (DR2)

Remember -UWE~1 for a single star, >>1 for some binaries

Strong function of period!

UWE works!

Changing astrometry

Resolve longer period systems

Less random noise

UWE increases!

Can also calculate Proper Motion Anomaly (PMA) between DR2 and eDR3

Penoyre et al 2021

Penoyre et al 2020

$$UWE_{pred} = \sqrt{1 + \left(\frac{\delta\theta}{\sigma_{ast}}\right)^2}$$

$$\delta\theta = \varpi \ a \ \Delta(q, l) \ \beta(\theta_v, \phi_v, e)$$

$$\Delta(q, l) = \frac{|q - l|}{(1 + q)(1 + l)}$$

$$\beta(\theta_{v}, \phi_{v}, e) = \sqrt{1 - \frac{\sin^{2} \theta_{v}}{2} - e^{2} \frac{3 + \sin^{2} \theta_{v}(\cos^{2} \phi_{v} - 2)}{4}}$$

