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We know about 150 GCs in the MW

and we know about 76(?) GC streams

Very few stellar streams. in
the Milky Way are directly

emerging from GCs

(Palomar 13: Shipp et al. 2020, Palomar 5 :
Odenkirchen et al. 2003, NGC 5466: Grillmair &
Johnson 2006, wCen: lbata et al. 2019a)
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“Tidal tails around GCs only become detectable close
to full dissolution, leading to a high fraction of GC
streams without progenitors”
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and we know about 76(?) GC streams
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We know about 150 GCs in the MW

and we know about 76(?) GC streams
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What have we learnt from the
globular cluster streams in
the Milky Way2:.
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Dark matter distribution
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Orbit structure and potential shape

/ bifurcation

120

Leading arm

|

; l
\ — t= 3055 Gyr ‘IHO
|
f‘*s iS)
| o
| =
70
PO~ [T || Ko
\ i
9
F10 ™
|
E15

o
(@)

|

thin stream =———————
—15 == S
—10 \2\\\ B -
(;\\\/\
X [k 5
C
p ] 16\/

T. Yavetz, Pearson+ 2021, T. Yavetz, Pearson+, in prep.

See also “stream-fanning”: Pearson et al. 2015

Image credit:
S5 Collaboration Price-Whelan, Pearson+ 2016



Hints of dark matter substructure

Unperturbed stream

$ -
'l ‘o '

Stream perturbed by two subhaloes

of -

,.

Thin GC strears wi Credit D. Eko
low velocity dispersion t al

Test of LCDM

Image credit: e.g., Yoon et al. 2011, Carlberg et al. 2012,
> ol Erkal et al. 2016 Bonaca et al. 2019~



'Hints of dark matter substructure

GD-1

Proper motion + photometry selection
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'Hints of dark matter substructure

GD-1

Proper motion + photometry selection
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Hints of dark matter substructure

GD-1
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But the Milky Way is just one
galaxy Wlth alotgoingon

..and we onIy know of &
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Some of the streams look wei'rd. -
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e also kinematics in
- Kuzma et al. 2022
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‘Some of the streams look wei'rd_ -
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The Galactic bar can me_ss‘ th.ings up

Gaps, fan and track variations in Pal 5
can form due to torques
from the Galactic bar

o SIS e
P g SO 4
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" Pearson et al. 2017
Bonaca, Pearson et al. 2020

See other bar + stream papers:
* Price-Whelan et al. 2016

~ Hattori et al. 2016

_Erkal et'al. 2017
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The Galactic bar can me‘ss- th.ings up

Gaps, fan and track variations in Pal 5
can form due to torques
from the ¢ tic bar

How do we distinguish
from subhalo gaps?

" Pearson et al. 2017
Bonaca, Pearson et al. 2020

See other bar + stream papers:
Price-Whelan et al. 2016

~ Hattori et al. 2016

_Erkal et al. 2017
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The Galactic bar can mess things up

Gaps, fan and track variations in Pal 5
can form due to torques
from the Galactic bar

How do we distinguish
from subhalo gaps?

1) Use streams on retrograde orbits

2) Use streams with large pericenters
far from the bar

3) Gaps from baryonic perturbers
should be timed with disk passages

Pearson et al. 2017
Bonaca, Pearson et al. 2020

See other bar + stream papers:
Price-Whelan et al. 2016

' Hattori et al. 2016

_Erkal et al. 2017
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The Galactic bar can me‘ss‘ th.ings up

Gaps, fan and track variations in Pal 5
can form due to torques
from the Galactic bar

How do we distinguish
from subhalo gaps?

1) Use streams on retrograde orbits

2) Use streams with large pericenters
far from the bar

3) Gaps from baryonic perturbers
should be timed with disk passages
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Wouldn't it be great if we
could get statistical samples
of thin stellar streams in

Image credit:
S5 Collaboration



Many known external dwarf streams

NGC 577: The Stellar Stream Legacy Survey

Martinez-Delgado, Pearson+ 2021

Image credit:
S5 Collaboration

NGC 4449 (dwarf stream around dwarf)

Martinez-Delgado et al. 2012
See also Carlin et al. 2019




Let’s turn to the Andromeda Galaxy

Although it does have molecular clouds, spiral arms, bar

PANdAS data: McConnachie et al. 2009, 2019
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Let’s turn to the Andromeda Galaxy

PANdAS data: McConnachie et al. 2009, 2019
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Let’s turn to the Andromeda Galaxy

PANdAS data: McConnachie et al. 2009, 2019
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Let’s turn to the Andromeda Galaxy

But no thin GC streams near

GCs in HST follow-ups
Huxor et al. 2014

Image credit:
S5 Collaboration

PANdAS data: McConnachie et al. 2009, 2019
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Let’s turn to the Andromeda Galaxy

55
But maybe we shouldn’t
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(Balbinot & Gieles 2017)
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Let’s do a blind search instead
Inject Pal 5-like streams to M31
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d = 785 kpc/M 31), Pandas
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251 d=23.5kpc (Ral 5), Ibata 2016
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Pearson, Starkenburg et al. 2019
Image credit:

S5 Collaboratioh
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Let’s do a blind search instead
Inject Pal 5-like streams to M31
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Let’s do a blind search instead

’
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Inject Pal 5-like streams to M31
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Let’s do a blind search instead
Inject Pal 5-like streams to M31

. [FeMl<-l
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Let’s do a blind Search '.instea'd.';ﬁ |

Inject Pal 5-like streams to M31
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We can maybe detect GC
streams with 5-10 x the mass
of Pal 5 in current PAndAS '

data aftera r ut

Image credit:
S5 Collaboration



Systematic search for stellar streams

251 60 data points
= 40 data points
= 20 data points

-10 -5 0

Image credit:
S5 Collaboration

The Hough Stream Spotter (HSS)

Pearson, Clark, Starkenburg+ 2022

Three different lines
with a different
number of points

github.com/sape‘arson/ HSS



Systematic search for stellar streams

251 60 data points
= 40 data points
= 20 data points

-10 -5 0

Image credit:
S5 Collaboration

The Hough Stream Spotter (HSS)

Pearson, Clark, Starkenburg+ 2022

Hough Transform

Hough 1962

p = xcos(0) + ysin(0)

github.com/sapearson/HSS



Systematic search for stellar streams
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Systematic search for stellar streams

The Hough Stream Spotter (HSS)

Pearson, Clark, Starkenburg+ 2022
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Systematic search for stellar streams
The Hough Stream Spotter (HSS)

Pearson, Clark, Starkenburg+ 2022
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Systematic search for stellar streams
The Hough Stream Spotter (HSS)

Pearson, Clark, Starkenburg+ 2022
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Systematic search for stellar streams

The Hough Stream Spotter (HSS)
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Systematic search for stellar streams

The Hough Stream Spotter (HSS)
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Systematic search for stellar streams
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Completeness checks with the HSS
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Systematic search for stellar streams

Completeness checks with the HSS

Inject ten 10 x Pal 5-like streams
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Systematic search for stellar streams

Completeness checks with the HSS

Inject ten 10 x Pal 5-like streams Recovered streams
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Systematic search for stellar stréams

Completeness checks with the HSS

Inject ten 10 x Pal 5-like streams Recovered streams
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Systematic search for stellar streams

BLind run: Hints of GC stream detections |
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Systematic search for stellar stréams

BLind run: Hints of GC stream detections |
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Systematic search for stellar stréams

Blind run: Hints of GC stream detections
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Systematic search for stellar stréams

Blind run: Hints of GC stream detections
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Systematic search for stellar streams

GC streams with the Roman Space Telestope
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Systematic search for stellar stréams

GC streams with the Rc_)man Space Telestope i
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Systematic search for stellar streams

GC streams with the Roman Space TelesCope
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Systematic search for stellar streams
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GC streams with the Roman Space Telescope
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Exciting questions to ask

about thin streams in other galaxies

How many thin streams are there? How does this compare to GC
populations/accretion histories? Does this affect Mgc vs halo mass
relations (can we do better if we count streams also)?
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Exciting questions to ask

about thin streams in other galaxies

How many thin streams are there? How does this compare to GC
populations/accretion histories? Does this affect Mgc vs halo mass
relations (can we do better if we count streams also)?.

Where are the long, thin streams located? What type of halos are
consistent with their shapes? (T. Yavetz et al

Do the streams have detectab

{ “‘

-“ :

Can we use external streams for potential recovery?
(Pearson et al., in prep) |

al., in prep)
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~ Summary

There are no streams more massive than 5 x Pal 5 in the M31
PAndAS data | |

We find 27 GC stream candidates in M31 with the |
Hough Stream Spotter (HSS), need deeper data to confirm

Roman combined with HSS will fin | ss GC
streams in 100s of nearby galaxi By

4

Future work: gaps searches, potential recovery, orbit structure

"~ Thanks!

Image credit:
S5 Collaboration



