Formation and Dissolution of Star Clusters

Michael Fall

Aspen Center for Physics 15 March 2022

Key Question: Is *recent* cluster formation a good guide to *ancient* cluster formation?

Similar vs Different Formation

Similar:

 Observed similarities between coeval clusters in different galaxies (esp. mass functions)
Simplicity

Different:

 Observed differences between young and old clusters (esp. mass functions)
Lower metallicity and higher UV field in the past may have suppressed cooling below 10⁴ K, thus imprinting a high Jeans mass ~ 10⁶ M_{sun}

Sombrero

Antennae

Mass Functions: Molecular Clumps

 $dN/dM \alpha M^{\beta}$ with $\beta \approx -2$

Mass Functions: GMCs and Young Clusters

 $dN/dM \alpha M^{\beta}$ with $\beta \approx -2$

different galaxies

Mass Functions: Young Clusters

different ages different galaxies

 $dN/dM \alpha M^{\beta}$ with $\beta \approx -2$

Chandar et al 2017

Apparent Upper Cutoffs in MFs and LFs: Statistical (Size-of-Sample), Not Physical

Line is expected scaling for $dN/dL \sim L^{-2}$

Whitmore et al 2007

See Mok et al 2019 for rigorous statistical tests.

Mass Functions: Young and Old Clusters

Questions

 Why do the mass functions of young clusters and molecular clouds and clumps have similar (power-law) shapes?

2. Why do the mass functions of young clusters of different ages have similar (power-law) shapes?

3. Why do the mass functions of old (globular) clusters have such different (non-power-law) shapes from those of young clusters?

Dominant Mass-Loss Processes 1. Protoclusters (aka star-forming clumps): Gas expulsion driven by stellar feedback $(t < 10^{6}/10^{7} \text{ yr})$ 2. Disk clusters (aka open clusters, YMCs): Stellar escape driven by tidal interactions with passing molecular clouds ($10^6 \text{ yr} < t < 10^9 \text{ yr}$) 3. Halo clusters (aka globular clusters): Stellar escape driven by internal two-body relaxation ($t > 10^9$ yr)

Gas Expulsion by Stellar Feedback

(1) protostellar outflows,
(2) photoionization heating,
(3) radiation pressure on dust,
(4) stellar winds

SFE(ε) is set by the mass of stars M_s needed to expel the remaining mass of gas M_g at the escape speed V_e .

=> scaling relns for $\varepsilon = M_s / (M_s + M_g)$ Fall et al 2010

 $\mathcal{E} \propto V_e^3 / R_h \propto M^{(3-5\alpha)/2}$ (energy driven), $\mathcal{E} \propto V_e^2 / R_h \propto M^{1-2\alpha}$ (momentum driven).

Radius-Mass Relation for Molecular Clumps

Fall et al 2010

Mok et al 2021

Observed relation: $R \alpha M^{\alpha}$ with $\alpha \approx 0.4-0.5$ => $\Sigma(M) \alpha M/R^2 \approx \text{const} \Rightarrow \epsilon(M) \approx \text{const}$ => cluster & clump MFs with similar indices β

Dissolution Timescales

1. Tidal interactions, dominant for young (disk) clusters, is mass-*in*dependent for $\rho_h \approx$ constant:

 $t_{\rm d} \alpha \rho_{\rm h}^{\nu}$ with $v = \frac{1}{2}$ (catastrophic regime) v = 1 (diffusive regime)

2. Two-body relaxation, dominant for old (halo) clusters, is mass-*de*pendent for $\rho_h \approx$ constant:

 $t_{\rm d} \approx 20 t_{\rm rh} \alpha M \rho_{\rm h}^{-1/2}$

Radius-Mass Relation for Young Clusters

Fall & Chandar 2012

Krumholz et al 2019

Observed relation: $r_{\rm h} \alpha M^{\alpha}$ with $\alpha \approx 0.3$ => $\rho_{\rm h}(M) \approx {\rm const}$ => $t_{\rm d}(M) \approx {\rm const}$ => shape of MF is preserved by tidal interactions

Mass-Age Distributions of Young Clusters

Fall & Goudfrooij 2022

Evolving Mass Function of Old Clusters

Evolution from Different Initial Conditions

Note: the late, lowmass form of *dN/dM* is independent of initial conditions

Conclusions

1. Populations of young and old (globular) clusters are remarkably similar from one galaxy to another.

2. Clusters lose mass mainly by (1) stellar feedback,(2) tidal interactions, (3) two- body relaxation.

3. Simple models of these processes account well for the observed properties of cluster populations.

Thanks to my collaborators! Rupali Chandar Paul Goudfrooij Mark Krumholz **Chris Matzner** Angus Mok Brad Whitmore Qing Zhang