

Modelling stellar cluster populations alongside their host galaxies: the EMP-Pathfinder view

Marta Reina-Campos

reinacampos@mcmaster.ca Jindra Gensior, Sarah Jeffreson, Ben Keller, Diederik Kruijssen, Joel Pfeffer, Alison Sills, Sebastian Trujillo-Gomez

Work based on:

MNRAS 000, 1-37 (2022)

Preprint 16 February 2022

Compiled using MNRAS LATEX style file v3.0

Introducing EMP-*Pathfinder*: modelling the simultaneous formation and evolution of stellar clusters in their host galaxies

Marta Reina-Campos^{1,2,3}*, Benjamin W. Keller³, J. M. Diederik Kruijssen³, Jindra Gensior^{4,3}, Sebastian Trujillo-Gomez³, Sarah M. R. Jeffreson^{5,3}, Joel L. Pfeffer⁶, and Alison Sills¹

¹Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, L8S 4M1, Canada

²Canadian Institute for Theoretical Astrophysics (CITA), University of Toronto, 60 St George St, Toronto, M5S 3H8, Canada

³Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, 69120 Heidelberg, Germany

⁴Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

⁵Center for Astrophysics, Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138, USA

⁶International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia

Accepted XXX. Received YYY; in original form ZZZ

14 Feb 2022

Reina-Campos+ (subm. to MNRAS, arXiv:2202.06961)

The man and the second se

Antennae galaxies

Credit: ESO/WFI MPIfR/ESO/APEX/A.Weiss et al. NASA/CXC/CfA/R. Kraft et al.

McMaster University

EMP-Pathfinder

EMP-Pathfinder is a new galaxy formation model that includes the physics of the multiphase nature of the ISM in AREPO, and it is coupled to a sub-grid model for stellar cluster formation and evolution

McMaster University W CITA ICAT

EMP-Pathfinder

EMP-Pathfinder is a new galaxy formation model that includes the physics of the multiphase nature of the ISM in AREPO, and it is coupled to a sub-grid model for stellar cluster formation and evolution

Dominant cluster disruption mechanism is tidal shocking by dense gas Lamers & Gieles (2006), Kruijssen+ (2011)

The E-MOSAICS project

Main difference: warm ISM

EMP-Pathfinder is a new galaxy formation model that includes the physics of the multiphase nature of the ISM in AREPO, and it is coupled to a sub-grid model for stellar cluster formation and evolution

Baryonic physics

Star formation prescriptions

Baryonic physics

EMP-Pathfinder is a new galaxy formation model that includes the physics of the multiphase nature of the ISM in AREPO, and it is coupled to a sub-grid model for stellar cluster formation and evolution

Sub-grid stellar cluster populations: up to 10 parallel cluster populations at once!

Simulations:

suite of cosmological zoom-in Milky Way-mass simulations: 21 with the constant SFE and 14 with the multi-ff SF recipe at a mass resolution of ~2.2e5MSun

and a minimum gravitational softening for the gas of 80 pc

Old (> 10 Gyr) stellar clusters

Old stellar clusters (>10 Gyr) evolved in a cold ISM reproduce the mass distribution of GCs in the Milky Way and M31

Old (> 10 Gyr) stellar clusters

Old stellar clusters (>10 Gyr) evolved in a cold ISM reproduce the properties of GCs in the Milky Way and M31

Mass function

Metallicity distribution

Number density radial profile

Parallel old (> 10 Gyr) stellar clusters

Emergence of GC populations takes place relatively independently of the specific choice of cluster formation and evolution model

Formation histories of stars and GCs

Cluster formation is very sensitive to the adopted baryonic physics that modify the cold, gas reservoir within galaxies

Take-home messages

EMP-Pathfinder: modelling the concurrent formation of stellar clusters and their host galaxies with a cold, dense ISM.

After a Hubble time of evolution in a cold ISM, old stellar clusters (>10 Gyr) are in excellent agreement with observed GCs in the Milky Way and M31

Stellar clusters can be diagnostic tools for upcoming simulations that include the cold phase of the ISM