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Setting the stage: Counting GCs in a central
galaxy provides an estimate of the host halo mass
Median M, [M_)]
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Observed scatter 0.28 dex
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* Independent of other methods of measuring halo mass

e Scatter is comparable or smaller than for other scaling relations

* (Almost) linear trend vs. non-linear M. - M, relation

* Practical application at distances < 300 Mpc, to resolve GC
population with HST and JWST imaging
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Is this relation expected from models of
globular cluster formation?

Median M, [M)]
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The relation also appears in other models:

El-Badry et al. (2019) merger-based semi-analytical model
and a random merging model (also Bastian et al. 2020)

fiducial model random GC formation

— — z=0 observed relation
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Model with updated galaxy scaling relations circa 2022

Model has three adjustable parameters:

Mge = 1.8 X 10_4.1\/Ig GCS rate scales with cold gas mass
P Mpo>,—Mp, 1 GCs form when halo is actively
m = : growing (often due to mergers)
-t Mp,

Cluster formation is triggered if Ry, >

The rest are published galactic scaling relations:

Lilly+13, Genzel+2015, Tacconi+2017 Mannucci+2009, Kirby+13, Ma+16
M M. \7'm M, % .
Mi = (M., z) =ng (109 M@) (1 +z2)"= [Fe/H] = log (W) (1+2) *]

evolution of cold gas fraction mass-metallicity relation



[Fe/H] mean

Model is tested on predictions for GC age-metallicity distribution

Median M, [M)]
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Most GCs in galaxy groups and clusters are formed in
satellite galaxies that merge into the central galaxy
Median M, [Mg)
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In-situ similar to field mass
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Accretion of satellites (ex-situ clusters)

Median M, [Mg)]
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More important for GCs
than for field stars
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Systematic properties of M..-M, relation
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GC systems above the mean relation are expected to form
1-2 Gyr earlier, with 0.1 dex higher [Fe/H]

(because of higher gas mass and density at higher z)
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Effective radius of the whole GCS,
based on de Vaucouleurs fit

New version of the model: Chen & OG (2022)

includes cluster disruption based on local tidal field
predicts spatial and kinematic distribution of GC system
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Kinematic signatures of in-situ and ex-situ clusters

Ex-situ GCs have higher velocity dispersion than in-situ GCs or field stars;
can only approximately be described by a color cut; both trends are same
as observed in the MW
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Includes size — mass relation for young star clusters

Uniform measurement of half-mass radii in the LEGUS HST survey,
plus other published samples
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logyg pac/[Ms Mpe =3 yr=!]

At redshift z > 3 massive star clusters (> 10° M, ) constitute a
much higher fraction of galactic star formation than now.
These are epochs when JWST has unique advantages over HST

or ground-based facilities.
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Evolution of the GCS mass — halo mass relation:
order of magnitude offset at redshifts z=3-10
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Stellar Mass [M]

mostly due to late growth
of halo mass and cluster
disruption (similar to field
stellar mass offset but over
a wider range of halo mass):
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Summary

* M- M, relation is robustly predicted by models of GC
formation and evolution (Choksi, OG, Li 2018; Choksi & OG 2019a)

e Accretion of satellite systems straightens the relation relative to
stellar mass — halo mass relation (Choksi & OG 2019b)

e Normalization of M- M, relation is expected to increase with
redshift, by up to an order of magnitude (Choksi & OG 2019b)

e Overmassive GC systems are expected to form 1-2 Gyr earlier,
with 0.1 dex higher [Fe/H]

e Density profiles and kinematic signatures of ex-situ clusters
(Chen & 0G 2022)

e Largest sample of young cluster sizes (Brown & OG 2021)
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