Formation of Compact Stellar Clusters by High-redshift Galaxy Outflows

Evan Scannapieco Arizona State University School of Earth and Space Exploration

Feedback in the Early Universe

- In a sample of 19 Lybreak z~3 starbursting galaxies, winds were found in all objects.
- Velocities ~200 km/s
- Lya-nebular emmi.+ metal absorptionnebular emission.
- SFR ~ 20 M_{\odot} /yr
- Ionizing photons get trapped behind outflows

Fujita et al (2003)

Minihalos

- Full of Primordial "Minihalos":
 - Virialized clumps of dark and baryonic matter
 - Virial temperature below atomic cooling limit (T < 10⁴ K)
 - Small masses (~10⁶ M_☉)
 - Primordial chemistry (76% H; 24% He)

Can't form stars after LW background becomes significant.

Fiducial Interaction $E = 10^{56} \text{ ergs}$; M=10^{6.5} M_{sun}; Z~10^{-1.5}

ES, Weisheit, & Harlow (2004) $(H + e^- \rightarrow H^- + \gamma; H^- + H \rightarrow H_2 + e^-)$ $(H + H^+ \rightarrow H_2^+ + \gamma; H_2^+ + H \rightarrow H_2 + H^+)$

Idealized Flash Simulations

- initially hydrostatic cluster, fully neutral, static gravity
- 1 kpc² x 2.0 kpc box 5 levels of refinement, 4 pc effective resolution,
- NFW halo ($M_{tot}=3\times10^6 M_{\odot}$)
- 150 km/s 5 Myr shock
- Chemistry and Cooling

Gray & ES (2010, 2011a, b)

Test Results

--Fixed T and n --Primordial Composition --H and He initially (singly) ionized

T = 100 K

Blue: n=0.01 cm⁻³ Red: n=0.1 cm⁻³ Green: n=1.0 cm⁻³ Yellow: n=10.0 cm⁻³ Teal : n=100.0 cm⁻³

Gray & ES (2010)

Test Results

--Fixed T and n --Primordial Composition --H and He initially (singly) ionized

T = 1000 K

Blue: n=0.01 cm⁻³ Red: n=0.1 cm⁻³ Green: n=1.0 cm⁻³ Yellow: n=10.0 cm⁻³ Teal : n=100.0 cm⁻³

Gray & ES (2010)

No Ionizing Background

Gray, ES, Kasen (2015), Gray & ES (2016,2017)

0

-1 -2 -3 -4

0 -1 -2 -3

-4

0 -1 -2 -3 -4

0 -1 -2 -3

Log10 Density (g/cm³)

Log10 Density (g/cm³)

Log10 Density (g/cm³)

number of blocks = 12265AMR levels = 6

Gray & ES (2010)

Minihalos Extracted From Cosmological Simulations

 Minihalos are not actually perfectly spherical, in a perfectly isolated environment, with a static dark matter field.

Richardson, Gray, & ES (2013)

Simulatons Summary											
SPH Parameters:		SPH z _{init} 199	SPH <i>z</i> _{<i>f</i>} 14	SPH $m_{\rm DM}$ 144 M_{\odot}	SPH $m_{\rm gas}$ 29.3 M_{\odot}	Box Size 2.57 Mpc					
AMR Model	M_6	$r_{\rm vir}$ (pc)	Δx (pc)	Orientation	$v_{s} ({\rm km} {\rm s}^{-1})$	$\mu_{ m s}$	E_{55}	σ_5	Z.	$Z(Z_{\odot})$	J_{21}
FID	2.72	505	5.92	Filament	226	60.4	10.0	2.62	8	0.12	0.0
LR	2.72	505	11.8	Filament	226	60.4	10.0	2.62	8	0.12	0.0
HR	2.72	505	2.96	Filament	226	60.4	10.0	2.62	8	0.12	0.0
PO1	2.72	505	5.92	IGM	226	60.4	10.0	2.62	8	0.12	0.0
PM07	0.716	320.	3.75	Filament	226	60.4	10.0	2.62	8	0.12	0.0
PM1	1.38	402	4.71	Filament	226	60.4	10.0	2.62	8	0.12	0.0
PM2	2.33	470.	5.51	Filament	226	60.4	10.0	2.62	8	0.12	0.0
PM7	7.17	693	8.12	Filament	226	60.4	10.0	2.62	8	0.12	0.0
PM19	18.7	967	11.3	Filament	226	60.4	10.0	2.62	8	0.12	0.0
Pv75	2.72	505	5.92	Filament	75.0	60.4	30.2	7.91	8	0.12	0.0
Pv125	2.72	505	5.92	Filament	125	60.4	18.1	4.74	8	0.12	0.0
Pv340	2.72	505	5.92	Filament	340.	60.4	6.66	1.74	8	0.12	0.0
Pv510	2.72	505	5.92	Filament	510.	60.4	4.44	1.16	8	0.12	0.0
Ρμ3	2.72	505	5.92	Filament	226	32.5	1.54	1.14	8	0.12	0.0
$P\mu 8$	2.72	505	5.92	Filament	226	77.5	4.59	3.35	8	0.12	0.0
Ρμ9	2.72	505	5.92	Filament	226	90.0	5.33	3.89	8	0.12	0.0
Pz10	2.72	413	4.84	Filament	226	90.7	10.0	3.92	10	0.12	0.0
Pz14	2.72	303	3.55	Filament	226	169	10.0	7.30	14	0.12	0.0
PZ005	2.72	505	5.92	Filament	226	60.4	10.0	2.62	8	0.005	0.0
PZ05	2.72	505	5.92	Filament	226	60.4	10.0	2.62	8	0.05	0.0
PZ5	2.72	505	5.92	Filament	226	60.4	10.0	2.62	8	0.5	0.0
PJ01	2.72	505	5.92	Filament	226	60.4	10.0	2.62	8	0.12	0.1

Table 1imulations Summary

Parameters

Mass: Final Mass roughly proportional to initial mass

Dissociating Background: No impact, H2 is formed much too quickly

Shock energy: in general, the higher the shock energy, the lower mass clusters are formed

Distance: The closer to the host, the more efficiently SF is induced. Very far away > 5-6 kpc little impact.

Concentration & Formation Redshift: Minor impact

Where are they now?

Disk shocking $t \sim r_{1/2}^{-3} M R$

Evaporation $t \sim r_{1/2}^{3/2} M^{1/2}$

Dynamical Friction t~ M⁻¹ R²

Maximum mass is an intrinsic property of the initial GC population

Castellani & Caputo 1984 Fall & Rees 1977

Globular Cluster Metallicities

Double-peaked [Fe/H] ~ -0.5 \pm .25 [Fe/H] ~ -1.6 \pm .35

Narrow range $< \Delta Z \pm 0.1$ In each GC

No Dark Matter In GCs

Requirements in Cosmological Simulations

Full radiative transfer Non-LTE chemistry / Cooling Resolving halos down to <=10⁶ total mass at distances of ~100 kpc physical

Requirements in Cosmological Simulations

RAMSES radiative transfer + primordial chemistry & cooling Tracks: Metallicity, Primordial Fraction, Pop III Metals, R-process elements.

Thank you!

V

IV

