History of Black Holes
Theoretical History
- The first suggestion of a black hole was by Michell in 1783 (he called the
objects "dark stars"). The idea is based on Newton's law gravity and the
escape velocity, and it was logical to ask whether an object could have
enough mass that nothing could escape. This idea was published by Laplace
based on Michell's hypothesis. However, noone believed that these objects
would actually exists.
- In 1915, Einstein presented his theory of General Relativity. This is the
basis for black hole studies.
- In 1916, Schwarzschild solved the equations and determined the radius
of a black hole, now called the "Schwarzschild Radius". It is the same
equation as found by Laplace. However, this theory contained a central
singularity which caused concern from many (including Einstein).
- From the 1920s to the 1960s there was a great amount of work on GR, and
specifically on black holes. Including rotation in a black hole proved
to difficult, and it was finally solved by Kerr in 1963. A rotating black
hole is called a "Kerr Black Hole". There is no direct observational evidence
yet for the spin of a black hole, although the indirect evidence is becoming
compelling.
- John Wheeler coined the phrase "black hole" in 1968 (it was
apparently suggested to him during a talk).
- A complete theoretical understanding of black holes is still a ways off.
It will likely involve understanding String Theory first.
Observational History
- We need to distinguish between normal black holes and supermassive black holes.
Normal black holes (if there is such a thing) are believed to be the
result of stellar evolution. End products of a star are white dwarfs,
neutron stars (and pulsars), and black holes. The difference has to do
with the amount of mass that was originally there in the star. Stars that
have masses greater than around 5 times the mass of the Sun may end up
as a black hole. Supermassive black holes are those that are thought
to be a million solar masses or greater, and they have only been found in
the middle of a galaxy (more massive things fall in to the center due
to gravitational friction).
- In terms of observations, not many scientists believed that black holes
could actually exists in nature. However, in 1963,
Maarten Schmidt discovered Quasars.
And the search for black holes was born.
- Quasars are extremely bright, small objects. They are considered bright since
they are extremely distant from us, yet we can easily see them. The average
quasar is seen at a distance when the Universe was 1/4 of
its present age (when it was only 3 billion years old). They are considered
to be small because of their rapid variability. An object cannot vary faster
than it takes light to travel across it---this determines the size of
the quasar.
- One of the strongest arguements for a quasar is that it is a black hole
that is actively feeding. This is based on measuring the energy output
from the quasar and its small size.
- Quasars are more abundant in the past --- we see very few quasars locally.
The idea is that as a galaxy forms, there is more material around for
a black hole to eat. After it is gone, then it becomes quiet. Thus, there
should lots of dead quasars around, and the numbers suggest that most
galaxies may have gone through a quasar phase. Therefore, every galaxy
might have a black hole.
- In the 1980s, astronomers began searching for supermassive black holes in
earnest. The first suggestion was in the galaxy M87 -- the giant central
galaxy in the Virgo cluster of galaxies. Remarkably, the black hole mass
estimate (based on a very crude approximation) is very close to the
present-day measurement.
- However, the big boost for black hole searches came when the Hubble Space
Telescope was launched (after it was fixed).
- The search for stellar mass black holes started around the same time as that
for supermassive ones. The best candidate was Cyg X-1, a binary system.
Today, there are about 20 stellar mass black hole candidates that range in
mass from 3 to 15 solar masses.