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HOP: A Herschel Open Time Key
Program

* Deep observations of O, in molecular clouds
* HIFI spectroscopy at 487, 774, and 1121 GHz
* 140 hrs + follow up



Where is oxygen in the dense ISM?

* The 3" most .
abundant element 500
* Indense clouds, the =, .
observed values and | oI
limits of O-bearing §ooor ;
species appear to Z ?
be insufficient 5 '
— Could O, contribute S 1ol .
to the Unidentified silicates & oxides ]
Depleted Oxygen T Ty
(UDO)? s o
Whittet 2010

The total range is set to the adopted reference abundance of
575 ppm for interstellar oxygen (Przybilla et al. 2008)



O, as a probe of oxygen

* O,isasimple
molecule, and the gas-
phase chemistry is
thought to be well-
known

, Gas phase chemistry only
1= ' T T | T | T

e Standard gas-phase
chemistry models

Fractional abundance (n(X)/n{H,})

predict high © e o e o
abundance > 10~ (e.g. Log Time (yrs)
Graedel et al 1982) Time dependent evolution of a gas phase

chemistry model: n(H,) = 10* cm3, T = 10 K,
and A, = 10 mag (K. Willacy)



X(0,) from SWAS & Odin observations is 2 100x
below prediction
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« SWAS
e 3.’5x5 beam at 487 GHz
* Upper limits of X(0O,) ~ 10/
(Goldsmith et al. 2000)
* QOdin
e 9 beam at 119 GHz
* Upper limits of X(0O,) < 10”7 for
half of the sources (Pagani et
al. 2003)
e Detection towards p Oph A
with X(O,) ~ 5 x 10 (Larsson
et al. 2007)

Favored explanation: O atoms stick onto grains followed by the
formation of H,O ice (e.g. Bergin et al. 2001)

The ice would not evaporate unless T > 110-120 K (Fraser et al.
2001)



HOP source selection

Embedded sources
— Central heating from the protostar
— Low mass: p Oph A, NGC 1333 IRAS 4A
— High mass: NGC 6334, Sgr A (50 km/s), Sgr B2 (S)
PDRs
— Photodesorption and photodissociation of H,0 (Hollenbach et al. 2008)
— Orion Bar
XDRs
— OH + O from photo-dissociated CO (e.g. Stauber et al. 2005)
— AFGL 2891
Shock heated sources
— 0O, produced from H,O desorption in shocks
— Orion H, Peak 1

Good tests of our understanding chemical processes in different
environments
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Lower Rotational Levels and
Transitions of O,
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The rotational levels are
connected by weak
magnetic dipole transitions

Observed by SWAS
Observed by Odin
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e Most favorable transitions
for Herschel

Herschel
e 44" beam at 487 GHz

* Great sensitivity




Detection: Orion H, Peak 1
(Goldsmith et al. 2011)

First multi-transition
detection of O, in the ISM!

Chemically poor

comparing with the hot
core

8 hrs integration

3 transitions observed
consistent with v, = 11 km
s1and 6v=2.9 km s’
. Olrion Hot Core: 5-6 km
.
* The Compact Ridge
(including KL): 8-10 km s
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* Assuming the emission fills the beam, the lines are opt thin and produced in
LTE, the beam averaged column density is N(O,) = 6.5 x 101® cm™, X(0,) =
(0.3-7.3) x 10°®

Possible explanations:

* Heated Dust- desorb water ice mantles; initially, there is spike in gas-phase
X(H,0), but after ~10* years we regain “standard” gas-phase chemistry with
large X(O,)

* Shocks- enhance reaction rate of OH + O =» O, + H



Where is the emitting source?

H, v=1-0 2 um
Emission from Bally
et al. (2011)

Herschel Beam size:
487 GHz 44°,
,and 1121

GHz 20“

Black circle: hot
core (5-6 km/s)
Yellow circle: Peak
A/ Western clump

— NH,, HDO, HC3N,
NO
— 10-11.4 km/s

Black cross: IRc2
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Cnt D source is coincident
with Peak A, Western Clump,
and MF4

Where and how is the O,
produced?
<> OT1 and CARMA follow
up toward Peak A
<> Could help distinguish
models



OT1 Results

e 10-11 km/s lines detected at 487 GHz and 774
GHz with line width 3-4 km/s toward Peak A

* No detection at 1121 GHz toward Peak A

* At 487 GHz, line intensities toward H, Peak 1 and
toward Peak A are comparable. At 774 GHz, the
line is ~1.4 times stronger toward H, Peak 1

* The 6 km/s feature appears to be methyl formate.

0.3 F1121GHz

{ Solid: Peak A
Dashed: H, Peak 1 (Goldsmith et al. 2011)
Color: LTE models

“ 487 GHz upper side band (black: H, Peak 1; red: Peak A)
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Line Identification
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* Deep integration in Orion- lots of lines!

* LTE modeling with XCLASS (e.g. Comito et al.
2005) with JPL and CDMS catalog

* Identified species: CH;0H, C,H:OH, CH;0CHj,,
CH,0CHO, HNCO, C,,0, H,CO, SO, SO,, H,CCO,
NS, OCS, H,CS

-50 S 50 * Most species show emission at 7-8 km/s
Solid: Peak A <~ SO has a 11 km/s feature toward H, Peak 1
Dashed: H, Peak 1 (Goldsmith et al. 2011) <~ CH,OH

Color: LTE models
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Where is the emitting source?

€O (6-5)

11 km s~}

CO (6-5) map (Peng et al. 2012)
487 GHz (44”)

1121 GHz (19”)
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The O, emission is not from Peak A
Favored explanation: low velocity shocks
(~10 km/s, T, ~ 400 K ) (M. Kauffman)
e Sulfur chemistry
* CH;0H could be enhanced (Garay
2000)

Assuming a 10” uniform source
and Gaussian beams
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Detection: p Oph A (Liseau et al.
2012)

Cold dense cores, A
molecular outflow from a
Class O protostar, and a
PDR excited by nearby B-
type stars

O, detection at 119 GHz
with Odin (Larsson et al.
2007)

Unique laboratory to test

e UV-radiation controlled
photochemistry

e gas phase and grain
surface reactions in
dense cores
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Detection at both 487 and 774 GHz
The strongest emission is seen
toward O1
e O1:the H,0 557 GHz peak
(Odin)
* 04: the densest region

Derived column densities
* 01/02:N(0,)=5.5x10>cm?,
T>50K
* 03/04 (densest regions): N(O,)
=6x10°cm2, T<30K
X(0,) = 5x 108
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Non-detection: Orion Bar
(Melnick et al. 2012)

e Upto 12 hrsintegration
towards the surface
layers of the FUV-
illuminated Orion Bar

— the thermal evaporation

of O from the grain
surfaces is enhanced

e Non-detection at both
487 and 774 GHz

* Upper limit N(O,) ~4 x
10%> cm (face-on)
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HST image (O’Dell & Wong 1996)
with 13CO 3-2 contours (Lis &
Schilke 2003)



Test of current models for externally FUV-
illuminated gas

X(0,) is predicted to peak at
intermediate depth of A, (~8)

— Some gas phase O is provided
by FUV photodesorption of
water ice

— O, photodissociation is not
extremely fast as the surface
region

The discrepancy between models
and observations can be resolved if:

— The adsorption energy of O >
800 K

— The emission arises within small
dense clumps

— The total face-on depth within
the bar correspond to Av <7

— The density structure is
different from model
assumption
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Hollenbach et al. 2009)



Summary

* We have detections of 3 O, transitions in Orion and 2
transitions in p Oph A
— Favored explanation for Orion: low velocity shocks

* Most sources show no detectable O, emission
— O, abundance is very low

— 0, is not a significant coolant or accounts for the
unidentified depleted oxygen in dense clouds

* Complete HOP data set will provide sensitive limits
to test important chemical processes during cloud
and protostellar evolution



