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Figure 21. The surface C/O ratio as a function of thermal pulse number for (a) a 3M., Z = 0.02 model AGB star, and (b) a 6M -, Z = (.02 model. The
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Fig. 18. Logarithm of the surface C/O ratio as a function of time during the TP-
AGDB for two 3M models of different metallicity. The top panel shows the C/0O ratio
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The fragile element fluorine can be produced inside the He-intershell of
AGB stars. Jorissen, Smith & Lambert [130] discovered that the [F/O] abun-
dance correlates with the C/O ratio in AGB stars, and that some N-type car-
bon stars show surface enrichments a factor of 30 above the solar ratio. The
increase in the C/O ratio is clearly a result of the third dredge-up and thermal
pulses, hence it was concluded that the carbon and fluorine are produced in
the same region in the star and mixed together to the surface. Jorissen et al.
[130] examined the many pathways that fluorine, or more precisely the isotope
YF, could be produced and concluded that the most likely chain is

HN(a, ) PF(871)*O(p, ) " N(av, 7) F. (4)

Fluorine production takes place in the He-intershell, a region that is essentially
devoid of protons, and has a very low abundance of **C and '°N. Hence other
reactions are required to produce the protons and the N. These other reac-
tions include ¥C(q,n)'00 that is required to produce free neutrons; these are
subsequently captured by ““N(n, p)'*C to produce free protons. In Figure 22
we show the composition of the He-intershell during and after a thermal pulse.
The increase in "N and '®O during the pulse is evident; both of these species
are subsequently destroyed and are absent in the lower panel. The resulting
F abundance in the He-intershell is more than an order of magnitude greater
than in the envelope. Fluorine can also be destroyed via F(«, p)??Ne, which
is more efficient at temperatures over ~ 300 x 10° K [128,131]. In Figure 23
we show the surface abundance evolution of '"F for the 3M, Z = 0.02, not-
ing the large increase over the TP-AGB through the repeated action of third
dredge-up mixing events. The fluorine abundance increases by about a factor
of four. -
An example of the many reaction rates ‘that affect the production of flu-
sorine is the alternative proton production reaction BF(q,p)*'Ne [132]. In-
(ludlng the 8 (@, p)?'Ne reaction reduces the abundance of 80 because it
‘competes with O production via the 'SF(3v)'®0 decay (the half life of '8F
is 109 minutes). However, the extra amount of protons from (c,p) enhances
the '¥O(p, @) 5N reaction rate, even though '*O production has been deprived
from the decay. This is shown in Figure 24 for the 3Mg, Z = 0.008 model,
where we also show an example of the effect of reaction rate uncertainties on
the nucleosynthesis predictions. We refer the reader to [115], [133], [128], and
[132] for more details on the complex production of fluorine in AGB stars.
The cosmic origin of fluorine is not yet completely understood, where
Type II SN explosions [134] and stellar winds from Wolf-Rayet stars [135]
play a significant role in producing this fragile element alongside AGB stars
[136]. Certainly AGB stars and their progeny (e.g., post-AGB stars and plan-
etary nebulae) are the only confirmed site of fluorine production thus far
[130,127,137,138], with no clear indication for enhanced F abundances re-
sulting from the v-process in a region shaped by past SNe [139]. The recent
observations of a greatly enhanced fluorine abundance ([F/Fe] = 2.90) in a
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Figure 1. Comparison of the observed and synthetic spectra of UU Aur (dots) with an identification of the available HF lines. Dashed lines represent the synthetic
spectra calculated with no F and with the abundance value obtained by JSL, respectively. The continuous line is the synthetic spectrum calculated with the abundance
given in Table 1, log e(F) = 4.88.
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Figure 2. Logarithmic abundances of fluorine vs. carbon. Symbols: filled circles,
N-stars; triangles, J-type; squares, SC-type; open circles, intrinsic O-rich AGB
stars from JSL. Lines are theoretical predictions for a 1.5 Mg, TP-AGB model
with metallicities Z = 0.02, Zg, and 0.006 (continuous lines from up to down),
and a2 Mg, Z = Z model (dashed line), respectively.
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Figure 3. Fluorine vs. average s-element enhancements in Galactic AGB stars.
Symbols as in Figure 2. Lines are theoretical predictions for 1.5, 2, and 3 Mg,
Z = 0.008 TP-AGB models (solid, dashed, and dotted lines, respectively) from
S. Cristallo et al. (2010, in preparation). The number of TPs achieved by each
model is also indicated.
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Fig. 23. The abundance evolution of 19% 4t the surface for the 3Mgy, Z = 0.02
model during the TP-AGB. The °F abundance increases by about a factor of 4

carbon-enhanced metal-poor halo star (140] represents further strong moti-
vation to better understand the details of fluorine production in AGB stars
[141].
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5.6 Hot bottom burning

In inbermediate~rnass AGB stars over about 4, (depending on 7) the base
of the Convectiye envelope cap dip inte the top of the H-burning shell, causing -
proton-capture nucleosynthesis to occur there (Figure 25). Thig phenomenon

I' chaing (Figure 17) May operate alongsie the ENO cycle; 7L, Productiop
is also Possible via the Cameron—Fowler Mechanjgm, [63, 146]. HBR Convertg
the 12¢ dredged ipt,, the envelope to MN which cap Prevent the C/0 ratio
exceeding ypjt , while keeping the 20/ Tatio near the equilibriym, value

4. Frost ot al. [147] hoted that intermediate—mass AGB starg Mmay become
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Fig. 25. The temperature at the base of the envelope during the TP-AGB phase
for a 6Mg, Z = 0.02 model

luminous, optically obscured carbon stars near the end of the TP-AGB, when
mass loss has removed much of the envelope, extinguishing HBB but allowing
dredge-up to continue. HBB stars may be important for the production of
many elements including nitrogen, lithium, sodium, as well as the magnesium
and aluminium isotopes.

5.7 The production of lithium by HBB

The observations of Wood, Bessell, & Fox [4] were the first to suggest that
the oxygen-rich luminous AGB stars in the Magellanic Clouds are undergoing
CNO cycling at the base of the convective envelope, converting the dredged up
carbon to nitrogen. The discovery that these stars are also rich in Li [62,63,64] -
gave further credibility to the idea that HBB was actually occurring in massive
AGB stars. The production of 7Li is thought to occur via the Cameron-Fowler
mechanism [148]: Some ®He, created earlier in the evolution (during central H-
burning), captures an a-particle to create "Be. The "Be can either 1) capture
a proton to complete the PP III chain, or 2) capture an electron to produce
T1i. Whether the "Be follows path 1) or path 2) depends critically on the
temperature of the region. Owing to efficient mixing in the convective envelope
(where the convective turnover time is ~ 1 year), some of the "Be is mixed into
a cooler region which prevents proton capture. The "Be will undergo electron-
capture instead, producing “Li. The "Li is also subject to proton capture
and is eventually mixed into the hot temperature region and subsequently
destroyed. Once the envelope is depleted in 3He, "Li production stops. The
Li-rich regime lasts for ~100,000 years for the 6Mq, Z = 0.02 model shown
in Figure 26. Time-dependent mixing is required to produce "Li in a HBB
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Fig. 26. The surface abundance of "Li during the TP-AGB phase for a 6Mg,
Z = 0.02 model

calculation because the nuclear timescale for the reactions involved in the
Cameron-Fowler mechanism are similar to the convective turnover timescale
(see Fig. 2 in [149]).

It is still an open question whether or not AGB stars contribute to the
production of “Li in the Galaxy [150,151]. There are many uncertainties in-
volved in the production of “Li in AGB models, including the mass-loss rates
used and the treatment of convective mixing [152]. Mass-loss rates for AGB
stars, such as the formula given by Vassiliadis & Wood [106] and Blécker
[107], have a superwind phase which occurs during the final few thermal
pulses. The superwind phase results in a period of rapid mass loss, and most
of the convective envelope is lost during this time. Thus the composition of
the envelope at the start of the superwind phase critically determines the
contribution AGB stars make to the enrichment of the interstellar medium.
In Figure 26 most of the "Li has been destroyed by the time the superwind
phase starts.

5.8 HBB and the C, N, and O isotopes

Hot bottom burning first alters the envelope abundance of the CNO isotopes
by the CN cycle and later, by the ON cycles. There is also a fourth cycle
involving the destruction of "YF to produce 0. The CN cycle burns 2C
first into '3C and later into N, which reduces the 12C/!3C ratio from the
pre-AGB value of ~ 20 to close to 4 — 5, see Figure 27. The *N abundance
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Figure 27, The surface abundance of "Li during the TP-AGB phase for a
6M . Z = (.02 model. The units on the y-axis are log, (n{LiVn(H}+12)
and time on the x-axis is scaled such that r = 0 is the beginning of the
TP-AGB. The lithium-rich phase lasts for about 200000 years.
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~ 0.4, respectively




HD 35155

-
=
(%2}
zZ
w - .
¢
Z
w .
R HV1963 |
g w)\
- |
w
['4

I HV 12179

TiO(,0)Ry L |
| TiO(,0)R, Cal |
|
L1 Tio(L0R,
1 1 1 1 1 1 1 1 1 L 1
6640 6660 6680 67Q0 6720 6740

WAVELENGTH (A)
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FiG. 6—Combined M, -P diagram for the Magellanic Clouds with the
filled symbols denoting the Li-strong stars. The segregation of the Li-strong
stars to the most luminous of the AGB stars is striking. Note that no AGB
stars with detectable Li 1 are found at luminosities significantly exceeding the
AGB limit. A few AGB stars with M, > —6 show detectable Lit lines. The
solid curves denote evolutionary tracks for AGB stars taken from the equa-
tions given in Wood et al. (1983) for fundamental pulsators.
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Fig. 28. The surface abundances evolution of 22Ne, »*Na, and the neutron-rich Mg 3
isotopes during the TP-AGB for the 6Mg, Z = 0.02 model (top panel), and for the (
6Mg, Z = 0.004 model (bottom panel) &
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Fig. 29. Same as Figure 28, but using the NACRE rates for the Ne—.Na and Mg-
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Figure 25. The evolution of various species involved in the Ne-Na and
‘Mg—Al chains at the surface of the 6M., Z = 0.02 model (upper pancl}
and 6M_, Z = 1.004 model (lower panél} during the TP-AGB. Time on
the x-axis is scaled such that 1 = 0 is the time at the first thermal pulse.
Abundances on the y-axis are in units of log,, ¥, where ¥ = X/A, where
X is mass fraction and A is atomic mass. Both calculations used the same
set of of reaction rates and scaled solar abundances. The 6 M., Z = 0.004
maodel has been described previously in Karakas (20105 ‘



