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Figure 1. Schematic showing how stellar mass determines the main nuclear burning phases at solar metallicity, as well as the fate of the final remnant.
This defines the different mass intervals we will deal with in this paper. Note that the borders are often not well determined theoretically, depending on
details such as mass loss and the implementation of mixing, for example. This is particularly true for the borders around the region of the clectron-capture
supernovae. Likewise, all numbers are rough estimates. and depend on compesition in addition to details of the modelling process.
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Figure 4. A schematic diagram showing the mass dependence of the different dredge-up, mixing, and nucleosynthesis events. The species most affected
are also indicated. The lower mass limits for the onset of the SDU, third dredge up, and HBB depend on metallicity and we show approximate values for
Z = 0.02. Note that the “extra-mixing” band has a very uncentain upper mass-limit, because the mechanism of the mixing is at presen: unknown.
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Figure3 a. Sketch of the internal structure of a star at the moment of first dredge-up.
The energy is produced by the H-burning shell above the He core. The first dredge-up
extends downward to incorporate regions where partial CN processing occurred during
the main sequence phase and are thus incorporated into the convective envelope (see
Figure 2). b. Second dredge-up for intermediate mass stars. Here the energy is produced
by the He-burning shell during the time when H burning is extinguished in the H shell.
Convection penetrates from the envelope to below the former position of the H shell
and hence mixes with the envelope products of H burning.
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Element MS and TO lower-RGB upper-RGB
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Figure 2. Stars from our (blue symbols) and Brown et al. (1989) (green symbols)
survey are shown (panel (a)) along with evolutionary tracks computed by Bertelli
et al. (2008). Li-rich K giants are shown in panel (b): blue filled circles denote
new Li-rich giants found in this study, green symbols are Li-rich giants from
Brown et al. (1989), and magenta symbols are other Li-rich giants taken from
the literature. Symbol size indicates amount of Li. The base of the RGB is shown
as a broken red line and red portion on each of the tracks represents the location
of the luminosity bump which is predicted to be seen for masses M < 2 M.
The thick black lines represent the clump region for He-core burning stars of
masses 0.8-2.5 Mg,.

(A color version of this figure is available in the online journal.)

masses up to 2 Mg (Iben 1968; Bertelli et al. 2008) and a bump
in the luminosity function along the RGB. As shown in Figure 2,
the kink on the evolutionary tracks (Bertelli et al. 2008) is visible
only up to 2 Mg for solar metallicity stars.

Internally, the kink is associated with an inversion in the
run of mean molecular weight with distance from the stellar
center. This inversion is linked to destruction of *He by the

KUMAR, REDDY, & LAMBERT

reaction *He(*He, 2p)*He which lowers the mean molecular
weight and the homogenization of the composition within the
convective envelope. Eggleton et al. (2008) show that this
inversion leads to “compulsory” mixing and changes to the
surface abundances of C, N, and O isotopic abundances, i.e.,
the '2C/'3C ratio is lowered relative to its value before the
bump. Charbonnel & Lagarde (2010) recognize too that mixing
occurs as a result of the molecular weight inversion but include
the effects of rotationally induced mixing to drive the mixing.
This mixing referred to as § u-mixing by Eggleton et al. (2008)
or thermohaline mixing by Charbonnel & Lagarde (2010) is
observationally confirmed by measurements of the '>C/!3C ratio
in giants along the RGB showing a decrease in the ratio at and
above the luminosity of the bump.

As p-captures on '2C create '3C, the reservoir of pri-
mordial and main-sequence synthesized *He is depleted. It
is this reservoir that is a potential source of ’Li from
the Cameron—Fowler (Cameron & Fowler 1971) mechanism
(®*He(*He, y)"Be(e™, v)’Li) but in order for the "Li to enrich
the stellar atmosphere it and its progenitor "Be must be swept
quickly to temperatures too cool for proton captures to occur.
Eggleton et al. (2008) calculations show that more than about
80% of the *He is destroyed in stars of masses less than about
1.5 M. This destruction seems unlikely to produce lithium be-
cause the mixing is too slow for the "Be and "Li to avoid de-
struction by protons (Lattanzio et al. 2008). However, the initial
subsurface *He reservoir is such that only a minor fraction of
the 3He need to be converted with moderate efficiency to pro-
vide an Li-rich giant. It is anticipated that the lithium produced
as the star crosses the bump’s luminosity may be destroyed
as the star with its convective envelope evolves to the tip of
the RGB.

The evidence from Figure 2 is that few of the Li-rich stars
are aligned along the run of bump stars in the H-R diagram.
Although the cooler Li-rich stars are likely to be bump stars,
many Li-rich stars are too warm to be so identified. Thus, we
suggest that Li-rich stars cannot be identified exclusively with
the bump. Rather the co-location of the Li-rich stars in Figure 2
with the high concentration of observed (Li-normal) giants and
the theoretical location of the clump suggest that they are clump
stars. If Li produced at the bump on the RGB survives a star’s
evolution from the bump to the clump, such Li-rich stars from
the survey may nonetheless appear predominantly as clump
stars because the lifetime at the clump is similar to or longer
than the time to evolve through the bump and to the clump via
the tip of the RGB. Since Li, if produced at the bump on the
RGB, may be destroyed by the time the star has evolved up
the RGB to experience the He-core flash, the speculation is that
the Cameron—-Fowler mechanism may also operate at the He-
core flash in at least some stars, i.e., in stars of M < 2.25 M.
Since Eggleton et al. (2008) predict survival of *He in stars
with M > 1.5 Mg, there seems in principal the possibility
that the He-core flash may be the key to synthesis of lithium
in stars in a narrow mass range centered at about 2 My with
the range’s the upper limit set by the maximum mass for a
He-core flash and the lower limit set by survival of sufficient 3He
following §u or thermohaline mixing on the RGB. Evidently,
the concentration of Li-rich stars at the clump implies that the
synthesized Li is swiftly destroyed as a clump star evolves along
the early reaches of the AGB. If all stars evolving through the
He-core flash synthesize copious amounts of Li, they survive as
an Li-rich giant for about 1% of their horizontal branch lifetime,
i.e., about 2 Myr. (The four luminous Li-rich stars in Figure 2
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Figure 14. Schematic structure of an AGB star showing the clectron-degenerate core surrounded by a helium-burning shell
above the core. and a hydrogen-bumning shell below the deep convective envelope. The burning shells are separated by an
intershell region rich in helium (~75%) and carbon (~22%), with some oxygen and *“Ne. A super-AGB star has an O-Ne
degenerate core otherwise the qualitative schematic structure remains the same. From Karakas, Lattanzio, & Pols (2002). Click
on the image to run an animation of a pulse cycle. '
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Figure 15, Evolution of the luminosities and core masses (in solar units)
for a 6M_, Z = (.02 model during the start of the TP-AGB. Each pancl
shows the evolution during the first 10 thermal pulses. Panel (a) shows the
surfuce (or radisted) luminesity (black solid line), H-burning shell fumi-
nosity (blue dot-dashed linel, and He-bumning shell luminosity (red dashed
line). Panel (b} shows the masses of the H-exhausted core (black solid line),
He-exhausted core {red dashed line), and the inner edge of the convective
envelope {(blue dot-dashed line).
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lipure 5 Iustration of the structure of a thermal pulse-asymptotic giant branch star over
«ne, showing the border of the convective envelope, the H-burning shell, and the He-
anung shell. The region between the H and He shells is the He intershell. Horizontal gray
.y represent zones where protons are assumed to be ingested to make '3C. In the earlier
wilels, 13C was not allowed to burn until the region was engulfed in a convective pulse.
" the newer models, '*C is naturally burned under radiative conditions in the gray area
“lure ingestion because of the progressive heating of the region. The slow neutron capture
1 products are then engulfed by the thermal pulse, and further processing occurs owing to
~utrons from the **Ne(a,n)*Mg source. Region A between the H shell and the border of
«convective zone and region B in the He intershell are mixed into the convective envelope
tny TDU, and these regions salt the envelope with treshly synthesized material. The
suuning part of the He intershell region below B is also enriched in s-process nuclides
wlis partly mixed over subsequent cycles. Note that the convective thermal pulse does not
wh the H-burning shell, as found by Iben (1977).
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