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FIGURE 4.2. Schematic representation of the combined nuclear and Coulomb potentials. A pro-
jectile incident with energy E < E¢ has to penetrate the Coulomb barrier in order to reach the
nuclear domain. Classically, the projectile would reach the closest distance to the nucleus at the
turning point R..
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FIGURE 4.6. The dominant energy-dependent functions are shown for nuclear reactions between
charged particles. While both the energy distribution function (Maxwell-Boltzmann) and the
quantum mechanical tunneling function through the Coulomb barrier are small for the overlap
region, the convolution of the two functions results in a peak (the Gamow peak) near the energy
E,, giving a sufficiently high probability to allow a significant number of reactions to occur. The
energy of the Gamow peak is generally much larger than kT.
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Fig. 7.3 Factors entering the calculation of the pair reaction ratc (7.22)- The

Boltzmann factor exp(——E / kT) (logar'\thmic scale on the left) and the bharrier pet
etration probabi\ity P(E)= exp(—V Es/E) (7.13) (1ogar'1thmic scale on the right)
are calculated for kT = 1keV ((:orresponding to the center of the Sun) and for the
reaction 3He 3He¢—“—)ﬂ“¥ﬁf§§. The product is the Gaussian- ike curve in the centtt
(shown on ¢ dm@ﬁm It is maximized ab Ec = (Jfﬁ;kT/’Z)w 8 . 185keV
and most reactions occur within ~ 5keV of this value. Note the small values of

exp(—EGm/kT) ~107% and P(Ec) ~ 107,
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FIGURE 4.3. Cross section o(E) of a charged-particle-induced nuclear reaction drops sharply with
decreasing energy E (by many orders of magnitude) for beam energies below the Coulomb barrier
Eq, thus effectively providing a lower limit E, to the beam energy at which experimental measure-
ments can be made. Extrapolation to lower energies is more reliable if one uses the S(E) factor.
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FIGU.RE 4.4. Energy dependence of the cross section (E) and the factor S(E) for the *He(a, y)"Be
reac.tlon. (Kri82). The line through the data points represents a theoretical description of lhé cross
section in terms of the direct-capture model. This theory is used to extrapolate the data to zero
energy. Data from other sources (chap. 6) give a higher absolute scale (40% difference).
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Cross-sections and Rate Constants 9

E  (Eg\'* _ E - Ey\*
€xXp —ﬁ— (_E‘—) _ maz €XP | — AEO/Q (118)
It may be readily shown (Cauldrons) that

2/3 .

E, = EJ® <’“7T) = 1.220(Z25 25 uT3)}/? (1.19)
1/2
AE, = 4<E°3’“T> =0.749(Z% ZE uTS)Y/® (1.20)
3E

Imaz = exp (‘T;) (1.21)
(1.22)

where the numerical expressions give Ey and AEj in keV. Note that
AEy/Eq ~ (kT/Eo)*? and, since Eg > kT in many circumstances, AEp
will be much smaller than Ej.

In this approximation, the rate constant (equation(1.17) is

2\'* AE, 3E,
< ov>= <;) Wé’e” (Eo) exXp <—7CT> (123)
where Sef(Eo) is the value of S(E) at E = E{\Eo) in the event that S(E)

varies with energy; a steep energy dependence around Fy would invalidate
the assumption of a constant S(E).
For mumerical evaluation, it is helpful to introduce

272\ 1/3
8= % = 42.46 (ZATZ:’"> (1.24)

- and substitute in equation(1.23) to obtain

1

<ov>=720x 1071
,uZAZB

BSes1(Eo) exp(—B) (1.25)

Equation (1.25) may be rewritten as

1/3
< ov>=1301x10"14 (ZAZB) 5(Bess)

232\ "
M T2/3

exp [——4.2486 <
9

(1.26)
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10 Introduction to Nuclear Reactions

The temperature dependence

As long as the Gamow energy is considerably less than the height of the
Coulomb barrier, there is a marked sensitivity of the rate constant to tem-
perature. To quantify this sensitivity in a simple manner, I write the rate
constant as follows

T n
<ov>p=<0v >y (-—~> (1.27)
To
By equating the derivatives din < ov > /dT of this and equation (1.23),
it is easily shown that

%_2 13__2
~ kT - —_— .
n~ = 3 (1.28)

Representative examples

To illustrate several aspects of the preceding discussion, I select five reac-
tions representative of hydrostatic burning in stars. Hydrogen burning is
represented by the p+p and p + *N where the former is from the pp-chain
and the latter from the CN-cycle. The a + '2C reaction is a part of helium
burning. The final two reactions, 2C + '2C and %0 + 160, power the
terminal phases of massive stars. For each reaction, I list in Table CB the
Coulomb barrier (Ejyq,), the thermal energy (E;n = kT'), the Gamow peak
energy (Eo), the width AEj, and n (rounded off to the nearest integer).
This information is tabulated for all reactions for T = 15 and for the non-
hydrogen burning reactions also for a temperature more representative of
the conditions in a massive star at the time these reactions are initiated. In
addition, I give the ratio E¢/F},, for the assumed conditions; the smaller
the ratio the greater the sensitivity of the rate constant to temperature or
the greater the exponent n. Finally, I give the low energy limit (E!%¥) of
laboratory measurements of the cross-section. Note that Eq/Epq, for carbon
and oxygen burning at the temperatures achieved in massive stars exceeds
the value for which the approximation used for the tunnelling probability is
accurate.

A General expression

Rarely will the S-factor be strictly constant; for example, the S-factor shown
in Figure CC increases steadily to low energies. In such cases, the S-factor
may be written as

S(B) = 50) + SO + 350)8 + .. (1.29)

The rate constant is given by equation (1.26) with
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Seff(o) = 5(0)

LBk S(0) ( o kT)

* 365, T 500) 36
18(0) (., , 89
* 350 (EO + %E‘okTﬂ (1.30)

Comipilations of rate constants for astrophysicists’ use provide analytical
approximations to the rate constants that may be incorporated in computer
programmes. For example, Angulo et al. (1999) adopt the following form
for [ov] = N4 < ov > for exothermic reactions without resonances

Nraie

C
[a'v]:TT;Z-x ( ) 1+ZC,T9
9

and give the coefficient Ci, the order of the polynomial N, 4. and co-
efficients ¢; obtained from a fit to the recommended rate constants. The
constant Co = 4.2486(Z4Zpp)*/? from equations (1.25) and (1 23). A
similar expression applies to endothermic reactions with Cj /T9 replaced
by (C’O/Tl/3 — Do/Ty) where C} is computed as Cy but with the nu-
clear charges and reduced mass corresponding to the exit channel, and
= |Q|/k = 11.605|Q| with the Q-value in MeV.

(1.31)

1.2.5 The Contribution of Resonances

As discussed in Sec. ...\ the cross-section may show a local increase at a
given energy for a particular pair of reactants in the entrance channel. This
i1s referred to as a resonance for which the cross-section may be represented
by the Brelt Wigner formul for a s1ngle isolated resonance

\ 2 r',Ty
E)y=n\ws
O'BW( ) ﬂ-\‘\ (E ER)2+I\2/4
where I'; and T'y are the paytlal widths that denote the probabilities
for formation and decay respedtlveky of the resonant energy level in the
compound nucleus, T' is the/sum of bhe partial widths in the exit (decay)
channel. , X is the de Broghe wavelength and w is a statistical factor
/
AN 23] \
(2J + 1)(2J; -hl

(1.32)

1+ dr) (1.33)

where J is the /jzfotal angular momentumof the resonant energy level, and
Jp and J; are sp}ns of the projectile and target nuclei respectively. Energles
and widths are in the centre-of-mass system. Note that the entrance channel
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Fig. 4. S(E) factor data for the 3He(d,p)“He reaction from the present work. The errors shown
represent only statistical and accidental uncertainties, which were used in the fits, The dashed
curve represents the S(E) factor for bare nuclei and the solid curve that for screened nuclei with

Ue =219eV.
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Accurate measurements of nuclear reactions of astrophysical interest within, or close to, the
Gamow peak, show evidence of an unexpected effect attributed to the presence of atomic electrons
in the target. The experiments need to include an effective “screening” potential to explain the
enhancement of the cross sections at the lowest measurable energies. Despite various theoretical
studies conducted over the past 20 years and numerous experimental measurements, a theory has not
yet been found that can explain the cause of the exceedingly high values of the screening potential
needed to explain the data. In this letter we show that instead of an atomic physics solution of
the “electron screening puzzle”, the reason for the large screening potential values is in fact due to
clusterization effects in nuclear reactions, in particular for reaction involving light nuclei.
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