COMMENTS ON ASSIGNMENT 3

1. In nuclear astrophysics and almost everywhere in astronomy, one needs to move quickly between temperature and electron volts. Adopting E=kT determine the temperature equivalent for for 1 eV.

The hard work of conversion is done by Iliadis in his Table E.1 where he gives

 $k=8.6173324(78) \times 10^{-5} \text{ eV/K}^{-1}$ and

From this 1 eV=11605 K to adequate accuracy.

Very often, it suffices to recall that

1 eV=10000 K or MeV= 10^{10} K

2. In many circumstances, one encounters expressions such as $\emptyset = \exp(E/kT)$. Often, one knows E in eV and then it is convenient to recognize that $\emptyset = 10^{-\Theta X}$ where $\mathbf{X} = (\equiv \mathbf{E})$ is in eV and $\Theta = 5040/T$

Using the table E. 1 from Iliadis estimate a more precise value of the constant 5040.

 $e^{E/kt} = 10^{-\Theta X} = 10^{aX/T}$

Recall that $\log_{10} x = \ln x / \ln 10$ = $\ln x / 2.302585$

Then, $\frac{E}{k} = 2.302585 \text{ X}$

With k=8.6173324 x10⁻⁵ eV/K, a=10⁵/(8.6173324 x 2.3025851) = 5039.78 K/eV

3. Determine the number of protons, **Z**, and the number of neutrons, **N**, for the nuclides ¹⁸F, ⁵⁶Ni, ⁸²Rb, ¹²⁰ In, ¹⁵⁰Gd, and ²³⁵U.

Straight forward! Chemical symbol provides Z and N is obtained from the mass number A given as the preceding script. Thus, ¹⁸F has Z = 9 and N = 18-9=9.

4. How much energy is released in the following reactions: (i) ${}^{3}\text{He}(d,p){}^{4}\text{He};(ii){}^{17}\text{O}(p,\gamma){}^{18}\text{F};$ (iii) ${}^{12}\text{C}(\alpha,\gamma){}^{16}\text{O};$ and (iv) ${}^{13}\text{C}(\alpha,n){}^{16}\text{O}?$ Assume that the reactions involve nuclei only in their ground states. Use the results presented in Table 1.1.

Recall Iliadis Sec. 1.5.3 and his Example 1.3.

³He(d,p)⁴He → Q=(ME)³_{He} +(ME)_d -(ME)_p -(ME)⁴_{He} =14931.2155 + 13135.7217 - 7288.9706 - 2424.9156 = 18353.05 [keV] = 18.353 [MeV]

With the aid of Figure 1.11, predict the spins and parities of ¹⁹O, ³¹P, and ³⁷Cl for both the ground state and the first excited state. Compare your answer with the observed values. These can be found in Endt (1990) and Tilley *et al.* (1995)

¹⁹O has 8 protons and 11 neutrons and is NOT a stable nuclide but is one that has been manufactured and studied. I cheated and looked up the energy level diagram in Tilley *et al.* (1995) — see their Table 19.2 and Figure 6. The ground state has $J^{\pi} = \frac{5^{+}}{2}$ and the first excited state at just 0.0960 MeV above the ground state has $J^{\pi} = \frac{3^{+}}{2}$.

6. Suppose that an excited state with spin and parity of 2⁺ in a nucleus of mass A = 20 decays via emission of a γ -ray with a branching ratio of 100% to a lower lying level with spin and parity of 0⁺. Assume that the γ -ray energy amounts to $E_i = E_i - E_j = 6$ MeV. Estimate the maximum expected γ -ray transition probability $\Gamma = \lambda \hbar$.

First step is to determine the type of the transition. $2^+ \rightarrow 0^+$ is an electric quadrupole or E2 transition. Then, equation 4-24 on p. 50 applies:

$$\lambda_{\rm w}$$
 (E2) $\hbar = 4.9 \text{ x } 10^{-8} \text{ A}^{4/3} \text{ E}^5$ and $\Gamma = \lambda \hbar = (4.9 \text{ x } 10^{-8}) 20^{4/3} 6^5 = 0.021 \text{ eV}.$

7. Consider a nucleus in a plasma at thermal equilibrium. Calculate the population probabilities of the ground state ($E_0 = 0$) and of the first three excited states ($E_1 = 0.1 \text{ MeV}$, $E_2 = 0.5 \text{ MeV}$, $E_3 = 1.0 \text{ MeV}$). Perform the computations for two temperatures, $T = 1.0 \times 10^9 \text{ K}$ and $3.0 \times 10^9 \text{ K}$, and assume for simplicity that all states have the same spin value.

One interpretation of "population probabilities" is simply n_1/n_0 , n_2/n_0 and n_3/n_0 . Alternatively, we might suppose that what is needed is n_1/n_{total} where $n_{\text{total}} = \sum \frac{ni}{i}$ is a sum all states, a sum generally called the partition function.