AST 383 Nucleosynthesis – Assignment 3

Due Tuesday, February 16 in class. Attempt questions 1 and 2, and two from questions 3-7.

- 1. In nuclear astrophysics and almost everywhere in astronomy, one needs to move quickly between temperature and electron volts. Adopting E=kt determine the temperature equivalent for 1 eV.
- 2. In many circumstances, one encounters expressions such as $\emptyset = \exp(E/kt)$. Often, one knows E in eV and then it is convenient to recognize that $\emptyset = 10^{-\Theta X}$ where $X = (\equiv E)$ is in eV and $\Theta = 5040/T$

Using the table E. 1 from Iliadis estimate a more precise value of the constant 5040.

The following problems came from Chapter 1 of Iliadis:

- 3. Determine the number of protons, *Z*, and the number of neutrons, *N*, for the nuclides ¹⁸F, ⁵⁶Ni, ⁸²Rb, ¹²⁰In, ¹⁵⁰Gd, and ²³⁵U.
- How much energy is released in the following reactions: (i) ³He(d,p)⁴He;(ii)¹⁷O(p, γ)¹⁸F; (iii) ¹²C(α,γ)¹⁶O; and (iv) ¹³C(α,n)¹⁶O? Assume that the reactions involve nuclei only in their ground states. Use the results presented in Table 1.1.
- 5. With the aid of Figure 1.11, predict the spins and parities of ¹⁹O, ³¹P, and ³⁷Cl for both the ground state and the first excited state. Compare your answer with the observed values. These can be found in Endt (1991) and Tilley *et al.* (1995).
- 6. Suppose that an excited state with spin and parity of 2⁺ in a nucleus of mass A = 20 decays via emission of a γ -ray with a branching ratio of 100% to a lower lying level with spin and parity of 0⁺. Assume that the γ -ray energy amounts to $E_r = E_r E_r = 6$ MeV. Estimate the maximum expected γ -ray transition probability $\Gamma = \lambda \hbar$.
- 7. Consider a nucleus in a plasma at thermal equilibrium. Calculate the population probabilities of the ground state ($E_0 = 0$) and of the first three excited states ($E_1 = 0.1$ MeV, $E_2 = 0.5$ MeV, $E_3 = 1.0$ MeV). Perform the computations for two temperatures, $T = 1.0 \times 10^9$ K and 3.0 x 10⁹ K, and assume for simplicity that all states have the same spin value.