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I. SPHERICAL COLLAPSE

This question looks tough at first sight. If we disect it and relate the pieces to the concepts we
already acquired in class, it could really be solve easily.

Let’s start by restating the problem. At an initial redshift of zi = 1, 000, a spherical region
is 1% denser (δi = 10−2) than the background universe. We assume the background universe is
the one in PS1, part 1: flat (k = 0), containing both matter and dark energy, with Ωm = 0.3 and
ΩΛ = 0.7. An overdensity of 1% is huge, so we expect the spherical region to stop expanding,
detach from the expanding background universe, and collapse on itself. Our task is to figure out
when the collapse will happen, in terms of redshift zvir.

We can think of the overdense region as a closed ‘sub-universe’ embedded in the flat expanding
universe. The current problem stages in the matter-dominated era (1 . z . 1000), therefore we
can use the approximate solution from PS1, part 1 (c)
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to compute zvir once we have the time of collapse tvir. It is worth-clarifying that we should keep the
Ωm term in the expression. Using Ωm = 1 means an Einstein-de Sitter universe, which is different
from the “Ωm = 0.3; ΩΛ = 0.7” universe in PS1 with the dark energy contribution dropped at early
times.

Using the definition of overdensity we can further write down the initial density of the spherical
region ρi,

ρi = (1 + δi)ρ̄(z = 1000) (2)

' (1 + δi)ρ̄m,0(1 + zi)
3 (3)

' 2.8× 10−21 g cm−3

Also, in part 2 (c) of PS1, we solved for the time of Big Crunch tc of a closed universe,

tc =

√
3π

8Gρ0
, (4)

where ρ0 is the ‘present-day’ density of the closed universe. Our task remaining is to figure out
what ρ0 should be for the ‘sub-universe’ representing the overdense region.

In the following I will show you three different ways of solving it – from a very rough estimate,
to the shortcut we discussed in class, to the exact analytical solution. Even if you solved it, it
would be helpful to look at the other ways. It is always good to know multiple ways of solving the
same problem.

I.1. Rough Estimate

We can directly write down a rough estimate if you recall that overdensity δ in an expanding
flat universe grows with a power-law in time (Lecture 8),

δ(t) = At2/3,
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combining with Equation (1) we have

δ ∝ a

⇒ a = ai
δ

δi
(5)

When the overdense region collapse δvir ' 2, so

zvir ∼ a−1
vir ∼ a

−1
i

δi
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δvir
∼ 1000 · 10−2

2
∼ 5.

Here we simply extrapolate from the linear growth regime. It may not be good enough, but it is
not too far.

I.2. Approximate Solution

In Lecture 8 we found that ρ0 should correspond to ρta, the density at ‘turn-around’. It was
further approximated using mass conservation and Equation (5) as

ρta ' ρiδ3
i (6)

' 2.8× 10−27g cm−3.

Equation (4) gives

tvir ' 7.9× 1016 s ' 2.5 Gyr.

Finally Equation (1) gives

zvir ' 2.6.

I.3. Exact Solution

At this point we are not too far from the exact solution. Recall for the flat background universe

H2(z) =
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H2 ' 8πG

3
ρ̄m (ignoring dark energy). (7)

At initial time,

H2
i '

8πG

3
ρ̄m,i, (8)

where ρ̄m,i is the initial matter density of the background universe.
We can then express the term GM at the initial time as

GM = G
4π

3
a3
i ρi

' G4π

3
a3
i (1 + δi)ρ̄m,i

' 1

2
H2

i a
3
i (1 + δi). (9)



3

By energy conservation, the initial total specific energy must be equal to that at turnaround,
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Again using mass conservation,
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' 2.7× 10−27g cm−3

⇒ tvir ' 8.1× 1016 s ' 2.6 Gyr

The final answer is almost exactly equal to the above approximation,

zvir ' 2.6.

II. WIMPS

Consider the dark matter halo of our Milky Way, it has a total mass of 1012M� and radius
R = 100 kpc. Our Galaxy has formed at the center of this halo, we can safely assume that it has
virialized.

At Virial equilibrium, we can assume all the WIMPs are moving more or less with an average
velocity vvir, and we have

2Ekin = Epot (11)
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Note that we are expressing the total kinetic energy and the total gravitational potential energy
of the halo, not just for one WIMP. Substituting the values for M and R gives

vvir ' 210 km s−1 . (14)
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