Life in the Outer Solar System

Jupiter

Big $R = 11R_{\oplus}$

Massive $M = 300 M_{\oplus}$

 $= 2.5 \times \text{all the rest}$

Day about 10 Earth hours

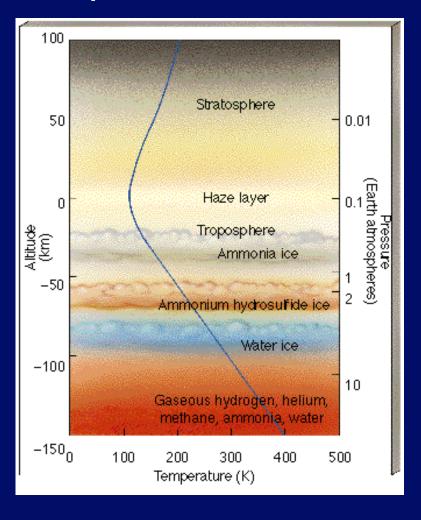
Year about 12 Earth years

Thick Atmosphere, mostly H₂, He

But also more complex molecules

Colors, storms

Like Miller - Urey


Life in Jupiter Atmosphere?

Sagan-Salpeter, etc.

Sinkers (Plankton)

Floaters (Fish)

Hunters (Fish)

Galileo Results on Jupiter

Reached Jupiter Dec. 1995 Sent probe into Jupiter's atmosphere at 100,000 mile/hour Decelerated at 230 g Lasted for 57 min.

Found: Strong winds

Turbulence, little lightning

Surprise: Little or no H₂O May have entered in an unusual place (fewer clouds)

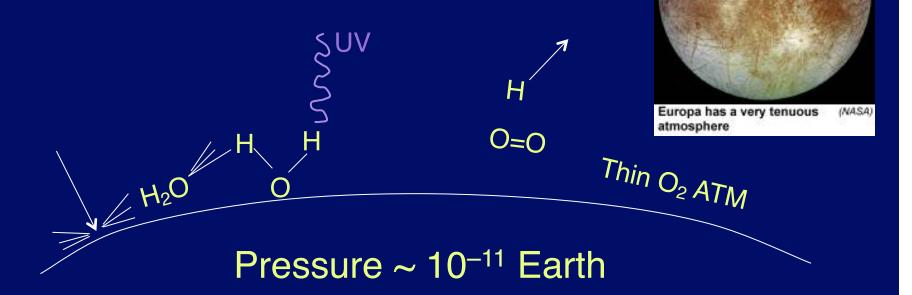
Life less likely?



Europa (Moon of Jupiter)

Surface: Fractured Ice Subsurface Oceans?

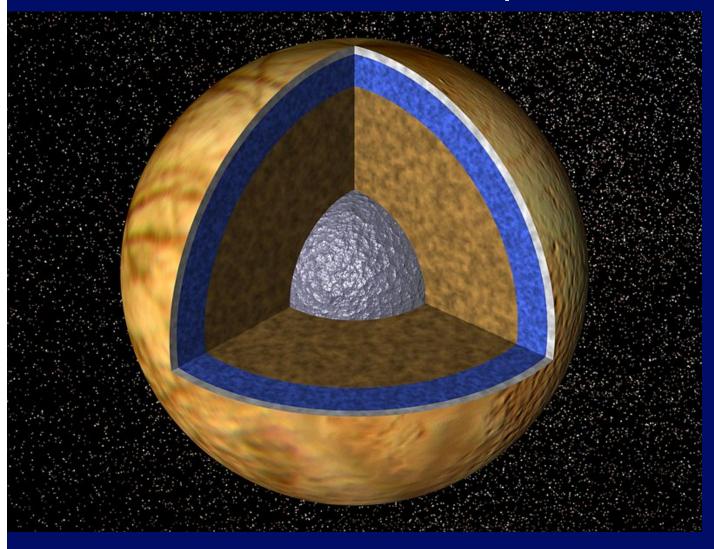
(Heated from Inside)



Close-up of "ice floes"

Galileo - Jupiter's Moons

http://www.jpl.nasa.gov/galileo/index.html


Europa has a (THIN!) atmosphere

More evidence for resurfacing along cracks by

Organic molecules on Callisto & Ganymede, maybe Europa?

Model of Europa's Interior

Ice crust may be 10-30 km thick. Ocean may be 90 km deep.

Future Missions

- Juno, launched in 2011
 - Will go into polar orbit, map gravity field
 - Determine if Jupiter has a rocky core
- Jupiter Icy Moon Explorer (JUICE)
 - ESA Selected in 2012
 - Launch 2022, arrive 2030
 - Ganymede, Callisto, Europa orbiter
 - Look for evidence of organic molecules

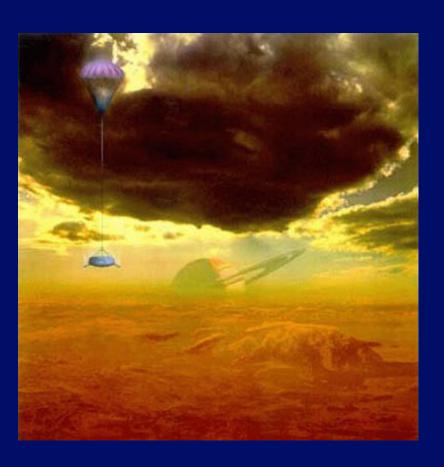
Saturn

- Big (9.4 R⊕)
- Massive (95 M⊕)
- Year 29.5 earth years
- Day 0.43 earth days
- Composition similar to Jupiter

Titan

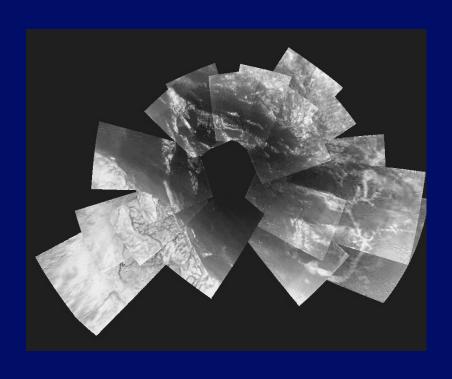
- Moon of Saturn
- Diameter ~0.4 Earth
- Atmospheric Pressure = 1.5 × Earth
- 85% Nitrogen BUT
- Cold (~90 K)
- Reducing atmosphere
- Haze
- Lab for prebiotic chemistry

The Cassini-Huygens Mission



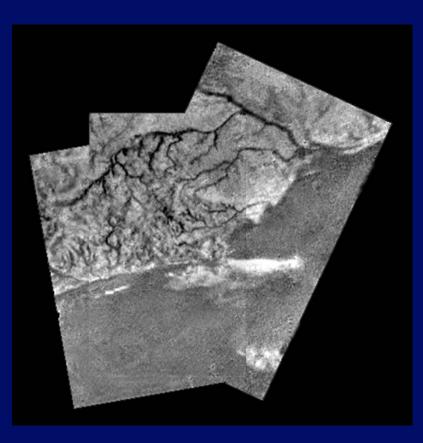
- Launched 10/13/97
- Arrived Saturn 7/2004
- Cassini studies
 - Saturn
 - Moons
- Huygens
 - Dropped onto Titan
 - Study atmosphere
 - Surface

http://saturn.jpl.nasa.gov/



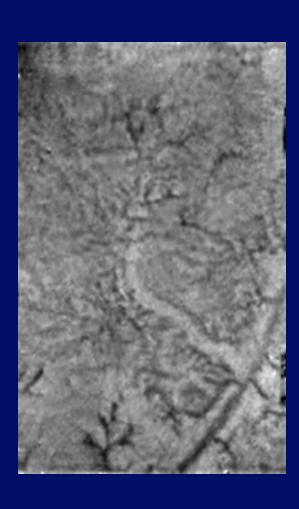
Huygens Probe

- Released from Cassini
- Slowed by heat shield
- Parachute deployed
- Soft landing
- Sampled gases in atm.
- Results:
 - High winds
 - 430 km/hr at 120 km


Titan Surface 10km up

- Mosaic of images
- Taken during descent
- Clearly shows features

Photo: ESA


Titan

- River channel
- Coastline
- Liquid is present
- Methane (CH₄)

Photo: ESA

Water Rift and Methane Springs?

- Straight feature:
- Water ice extruded?
- Stubby channels:
- Methane springs?

Lakes at northern latitudes

- Radar mapping of northern latitudes (2006)
- Strong evidence for liquid lakes
- And big cloud of ethane (C₂H₆)
- Ethane raining (or snowing) into lakes

Lakes and Islands

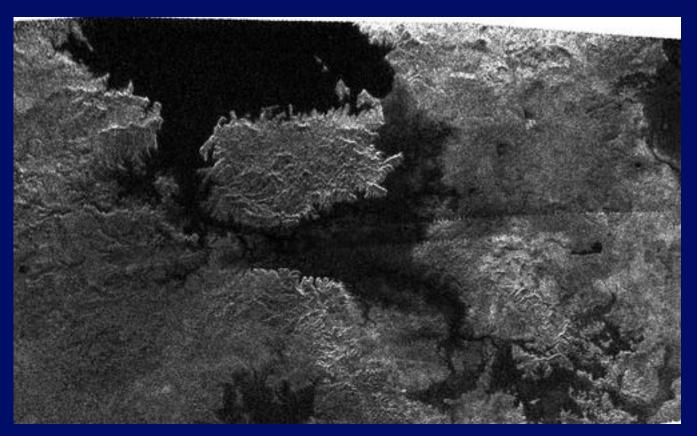


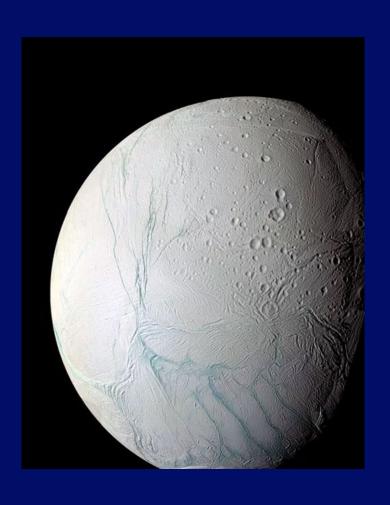
Image from Feb. 2007: based on radar.

Large lake and island (size of Big Island, Hawaii)

And smaller lakes

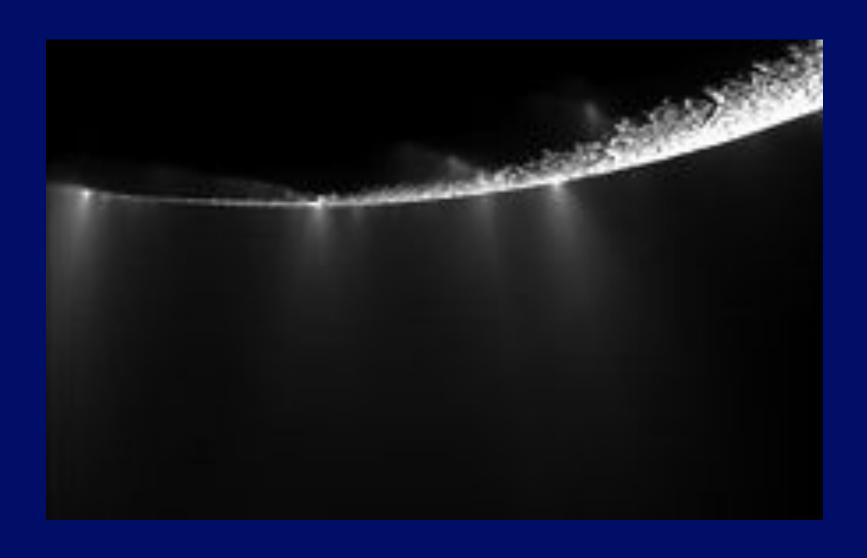
From the surface of Titan

- First view of surface
- "Rocks" of water ice
 - Pebble size (15 cm)
- Surface yielding
- Mixture of ices
 - Water
 - hydrocarbons


More Titan Results

- Hints of ammonia (NH₃)/water (H₂O) ocean
 - About 200 km under surface
 - Outgassing of NH₃ may supply N₂ atm.
- Mapping by radar reveals many lakes and seas of hydrocarbons
 - Seasonal changes in size, depth of a lake
 - Total hydrocarbons on surface about 100 times total oil and gas reserves on Earth

Possible Site for Life


- Miller-Urey type experiments with Titan atm:
 - Formed amino acids and nucleotide bases
- Methane-based life?
- Metabolize with H₂ and C₂H₂, produce CH₄
- Parallel to O₂ and glucose, produce CO₂
- Also, could produce atmospheric nitrogen

Enceladus

- Moon of Saturn
- Very shiny
- Part of surface old (craters)
- Part is new, with cracks
- Cassini saw ice geysers (2006)
- Subsurface liquid water
- Source of heat unclear

Geysers on Enceladus

How to search for life

Have to decide what test indicates life
Hard to anticipate conditions (recall Viking results)
What about finding "protolife"?

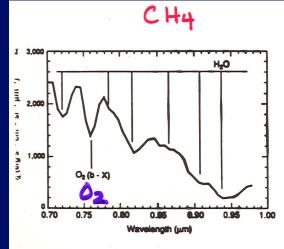
National Academy report - how to search for life

- 1. Delivery by comets, meteorites e.g. Mars meteorites
- 2. Sample return Mars possible
- 3. Experiments by landers -

Viking on Mars, ...

Future: Europa probe and return?

Titan?


Issues of contamination

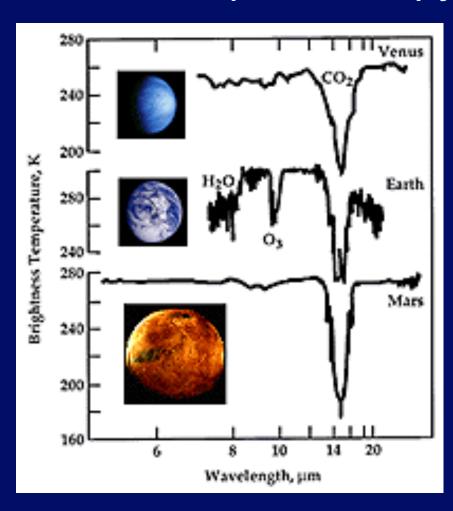
4. Biomarkers

Presence of both O₂ and CH₄ in Earth atmosphere indicative of life How convincing?

Detecting Life on Earth from Space

Galileo used during close Earth approach
Photographs (1 km resolution) No clear signs of intelligent life
Spectrometers - evidence of life Lots of O₂

1 a, Galileo long-wavelength-visible and near-infrared spectra of larth over a relatively cloud-free region of the Pacific Ocean, north meo. The incidence and emission angles are 77° and 57° respective. The (b' \sum_{k}^{+} — $X^{3}\sum_{k}^{-}$) 0–0 band of O_{0} at 0.76 μ m is evident, along a number of $H_{2}O$ features. Using several cloud-free regions of gairmass, we estimate an O_{2} vertical column density of 1.5 km/st \pm 25%. b and c, Infrared spectra of the Earth in the 2.4–5.2 μ m n. The strong v_{3} CO $_{2}$ band is seen at the 4.3 μ m, and water vapour s are found, but not indicated, in the 3.0 μ m region. The v_{3} band rous oxide, $N_{2}O$, is apparent at the edge of the CO $_{2}$ band near m, and $N_{2}O$ combination bands are also seen near 4.0 μ m. The



methane (0010) vibrational transition is evident at 3.31 μ m. A cr estimate ¹⁰ of the CH₄ and N₂O column abundances is, for both spec of the order of 1 cm-amagate (\equiv 1 cm path at STP).

NATURE · VOL 365 · 21 OCTOBER 15

RADIO EMISSION: CLEAR EVIDENCE OF

Spectroscopy of atmosphere

Could be detected with future large space telescope, but very difficult
Need specialized capabilities