Future of Life in the Solar System

Long-term Thinking

- Most of our current problems and challenges arise from short-term thinking
- How do we foster the long view?

 The ten-thousand year clock
 <u>http://www.longnow.org/projects/clock/</u>
 Why 10,000 years?
 - Millions? Billions?
- · What could we do on long time-scales?

Future of Life in Solar System

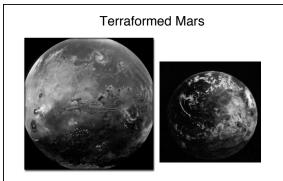
Terraform other planets (Mars most likely)

Space Colonies

Solar Power from space

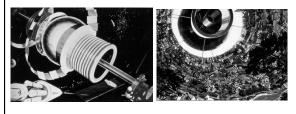
Dyson spheres

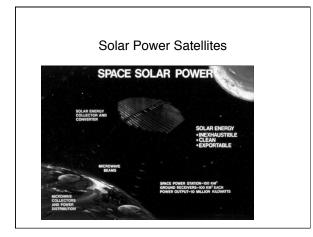
Robots

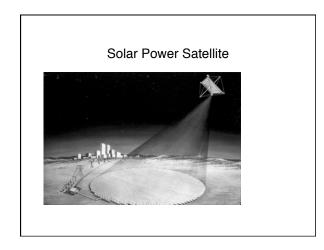

Von Neumann Devices

Terraforming Planets

Seed other planets with "bio-engineered organisms"

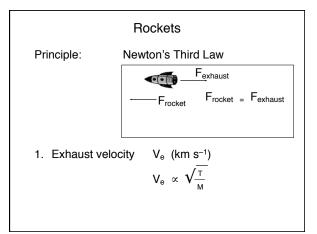

These make the planet more habitable for humans


To terraform (need H_2O , O_2 , O_3) e.g., Melt polar caps on Mars (10¹⁴ tons of ice) 2500 to 10000 years to build up atm. pressure, get liquid water



Ocean in northern lowlands covers 25% of planet

Space Colony (Island One)

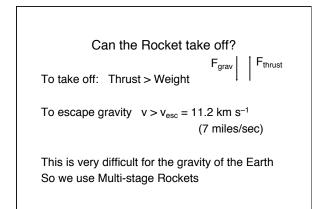


Dyson Spheres

- · Ultimate version of solar power satellites
- · Surround the sun with collectors
- Have access to nearly all of solar luminosity – 2 x 10²⁶ Watts
- What if another civilization did this?
 - Dyson's idea, so called Dyson spheres
 - It would look like an infrared source
 - Hard to distinguish from young or old stars surrounded by dust

Recall Newton's second law: F = (dp/dt) = m (dv/dt) = m a, if m constantIf v constant, but m is not, F = (dm/dt) v

2. Thrust (Force) $F = (dM/dt) V_e$ (Newtons, Pounds)


dM/dt = rate at which mass is ejected

3. Mass ratio

R_M = <u>Total Mass at Takeoff</u> Mass After Fuel Used Up

High mass ratios mean you need a lot of fuel to get a certain payload accelerated to a certain speed

4. Specific impulse	(s.i.)
Thrust	(S.I.) (Newtons/kg/sec,
Rate of Fuel Use	Pounds/Pounds/sec = "sec")
A measure of efficiency.	
Highest possible s.i. with	i chemical fuels is < 500

Current situation

Space Shuttle: Mass = 2×10^6 kg

 $\begin{array}{l} F_{thrust} = 29 \times 10^6 \quad Newtons \\ R_M = 68 \mbox{ for actual payload} \\ s.i. = 455 \mbox{ sec. } \sim \mbox{ best possible with} \\ \mbox{ chemical fuel} \end{array}$

For more adventurous exploitation of Solar System Probably want Nuclear Propulsion Fission could give s.i. = 1.5×10^6 sec (in practice, more likely to get 20,000 sec)

Future of Humans in Space

Exploration Vision in 2004

- First return to Moon, then Mars
- Under-funded, side-effects on other programs
- · Fundamental Redirection in 2011
 - http://www.nasa.gov/missions/solarsystem/explore main.html
 - Return to Moon, travel to Mars essentially put on hold for now

New Vehicles

- · Retire space shuttle
- Look to commercial ventures for access to space station
- Go "back" to Apollo-like capsules (Orion) on big rockets (Ares V)
 - Twice the volume of Apollo (4-6 crew)
 - New technology, more flexible, automation
 - Launch-abort system
 - Saves crew if problem during launch
 Solar panels for long term power

Robots

- · Martian landers and rovers
- · Likely to use for most solar system exploration
- Ultimate is Von Neumann device - Self-repairing, self-replicating robot - A kind of life?
- Human-machine hybrids - Artificial body parts increasingly common

Future of solar system

- Think about the long term future of solar system
- · Will we colonize other planets?
- Mine asteroids for metals?
 - Could we detect an ET civilization doing this?
 - Forgan and Elvis 2011: hard to be sure • Look for chemical or other anomalies