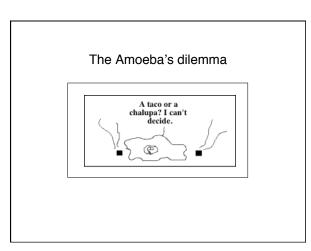
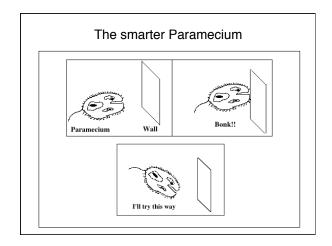
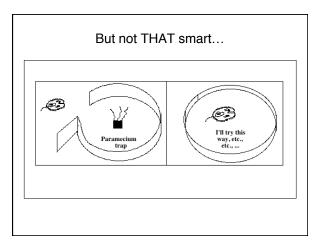
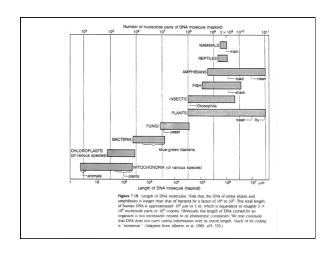

The Origin of Intelligence

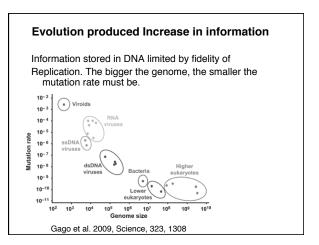

The Origin of Intelligence


 \mathbf{f}_{i} : Fraction of life-bearing planets where Intelligence develops


What is intelligence?
Propose: "The ability to model the world, including the organism itself"

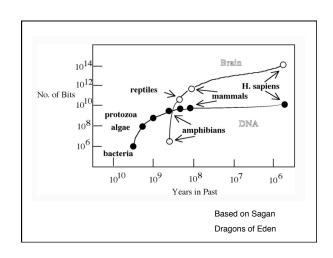
⇒ Intelligence as continuum related to complexity of organism milestone: human-level intelligence


Information as Measure of Intelligence


Evolution of intelligence \simeq increase in information DNA: model of organism, the program A quantitative measure: # of bits of information

Bit: Information in the answer to a yes/no question

e.g., Purines Pyrimidines
Adenine (A) Cytosine (C)
Guanine (G) Thymine (T)


Unit	# of Bits	# of Doggo	# of Books
	# OI DIIS	# of Pages	# OI DOOKS
1 base	2		
1 codon	6		
Virus	~10³	1	
Bacterium	10 ⁶	1000	
Amoeba	5×10^{8}		500
H. Sapiens	6×10^{9}		small library
*~ 2% codes for p	roteins		

Further Complications...

- Humans make about 90,000 kinds of protein
- Now it seems we have only 21,000 genes
- · What's going on?
- One gene can lead to different proteins
 - The mRNA is edited to remove introns
 - Sometimes exons are left out or introns in
 - Splicing controls gene expression
 - More common in more complex organisms

Why Brains?

To get more than 10¹⁰ bits (or 10⁸?), need extra-genetic storage Neurons led to brains How is information stored in brains? Not entirely clear

Neuron fires or not:

1 bit/neuron

Yes or No

Neurons are the building blocks

dendrites.
Some favor firing, some inhibit firing.
Based on balance, the neuron fires (or not).
Electrical signal travels along axon (output).
Releases neurotransmitters

Neuron has many inputs from

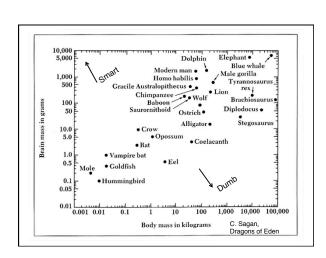
in synapse.
They affect another neuron.

From slice of life project

Further complication: reverse signalling. Receiving neuron can release chemicals that inhibit the neurons that sent "don't fire" signals. Involved in learning.

Brains are Different

Neuron firing controlled by many (~10³) inputs synapses


An **analog** computer ⇒ Hard to count

 $\sim 10^{11}$ neurons, 10^{14} synapses

Corresponds to 20×10^6 books = NY public library

Surrogate Measure:

Brain size or Brain mass/body mass

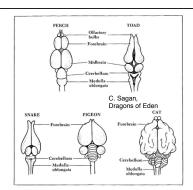
Brain organization

Brain is reprogrammable, unlike genes ⇒ Individual can learn

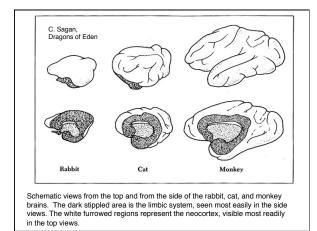
Two hemispheres

Many functions parallel, but some specialized

Many ways to divide brain


Layered brain: reptilian brain

limbic system (mammals)


cortex

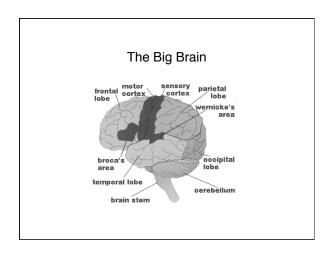
Brain size has increased (in some species) with time

⇒ Evolution favors higher intelligence (sometimes)

Schematic diagrams comparing the brain of a fish, an amphibian, a reptile, a bird, and a mammal. The cerebellum and medulla oblongata are parts of the hindbrain.

A highly schematic representation of the reptilian complex, limbic system and neocortex in the human brain, after MacLean.

NEOCORTEX


LIMBIC SYSTEM

RETILIAN

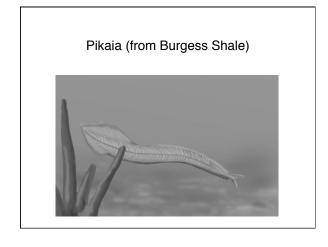
COMPLEX

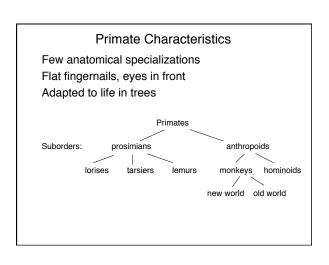
C. Sagan,

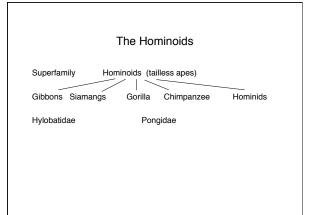
Dragons of Eden

Human Evolution

Phylum: chordata - vertebrates - bilateral symmetry

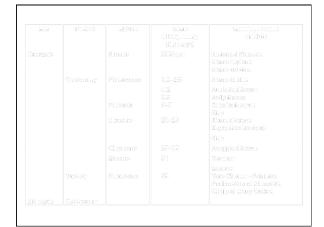

~ 500 Myr ago


Class: mammals arose in Triassic period


~ 225 Myr ago

Proliferated and "radiated" at end of cretaceous (~ 65 Myr ago) after extinction of dinosaurs

Order: primates - late cretaceous ~ 80 Myr ago



"Recent" fossil record

Cenozoic Era (recent life) Divided into Tertiary (3rd stage) and Quaternary (4th stage) Periods

Tertiary further divided into 5 epochs: dates (in million years ago) are rough.

Early Primate Evolution

Adapting to life in trees

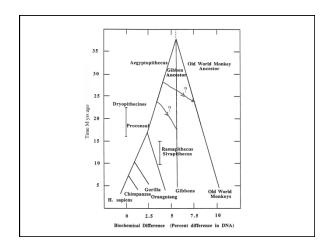
Claws --- nails, grasp branches independent big toe, thumb

 $Nocturnal \longrightarrow diurnal$

Smell ---- vision stereo vision (eyes in front)

Color vision

More complicated information processing, tool

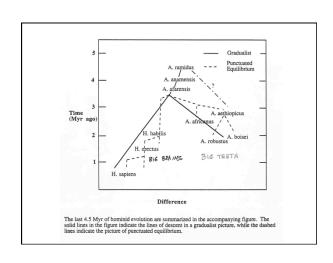

use becomes possible

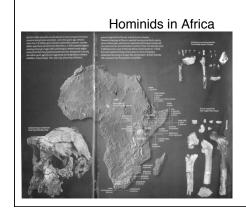
Origin of Anthropoids

Eocene transition to oligocene $\,\sim 37\,$ Myr ago cooler, more grasslands

More diurnal, some leave trees, lose tail

Fayum beds - Egypt 33 Myr ago
Early anthropoid fossil: aegyptopithecus
Used to be considered first hominoid, but now
suspect monkey/ape split was later



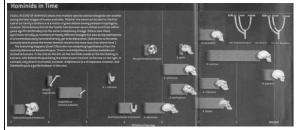

Hominid Evolution

Fossils now known back to $\sim 6~\text{Myr}$ Molecular dating of chimp - hominid split 5-7 Myr

Many variations now known many species co-existed in Africa Earlier species show mosaic of human-ape traits

Upright walking preceded brain growth, tool making May not have arisen on savanna Looks like "radiation": many species arising All but one extinct now

Scientific American Jan. 2003


Comparison of Femurs

Femur adapted to bipedality already by 6 Myr ago

Scientific American Jan. 2003

Various Family Trees

Scientific American Jan. 2003

Consequences of New Fossils

- Even more clear that bipedal locomotion far preceded big brains
- 2. Bipedality not clearly connected to savanna
- 4. Several of the oldest hominids are very close to Ape Human split
- 4. Bipedality looks like key change that separated human and ape

Ideas for Origin of Bipedality

- X 1. Tool use, big brain feedback
- ?? 2. Predator avoidance on savanna (adaptations for long-distance running unique to humans)
 - 3. Food acquisition (carry food)
 - 4. Reproductive Success (carry food & infants) ("Bringing home the bacon")

Humans and Chimpanzees: 1

- · Recent data on genes of chimpanzees
 - · Draft of chimp genome released in 2003
 - 99.4% the same as humans
 - · For nonsynonymous sites (important)
 - Split from gorillas: 6-7 Myr ago
 - Human split from chimp: 5-6 Myr ago

Humans and Chimpanzees: 2

- · Paper by Wildman et al. (2003)
 - PNAS, 100, 7181
- · Wildman et al.'s "modest proposal"
 - Family Hominidae includes all extant apes
 - Genus Homo includes chimps
 - "We humans appear as only slightly remodeled chimpanzee-like apes."

Humans and Chimpanzees: 3

- On the other hand...
- · Cargill et al. (2003) Science, 302, 1960
- · Studied what genes evolved fast
 - Chimps: fast changes in skeleton, skin
 - Humans: smell, hearing, speech, digestion
 - · Adaptation to consuming more meat

Humans and Chimpanzees: 4

- · J. Zhang 2003 in Genetics, 165, 2063
 - Rapid evolution in ASPM gene
 - Mutations in this gene cause microcephaly
 - Brain about size of Australopithicus
 - · So important for brain size
 - Rapid evolution in primates
 - Especially in line leading to humans
 - · 15 changes since human-chimp split
 - · May explain factor of 3 increase in size
 - · Last change about 200,000 yr ago
 - Further developments are cultural (much faster)

Still more recent developments

- · Several other genes involved in brain growth
 - Evidence for rapid evolution
 - Some may have evolved as recently as 6000 years ago (update on ASPM gene)
- · Differences in brain microstructure
 - Special (fast) neurons (VENS) in apes
 - Humans have many more
 - Some large whales also have VENS
 (brain story in Science 2007, 315, 1208)

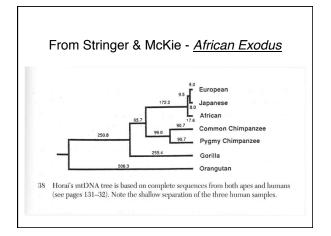
Human-Chimp differences

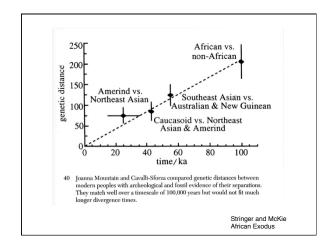
- Latest numbers (Science 2007, 316, 1836)
 - Base substitutions: 1.23% difference
 - Gene copies indicate bigger differences
 - Up to 6.4% in terms of duplications and losses
 - · Some seem important in brain development
 - Shows limitations of just comparing base substitutions without knowing what genes do
 what

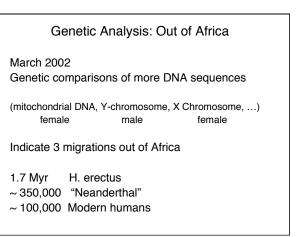
The Last Steps to Modern H. sapiens

Origin of Modern H. Sapiens

Many anthropologists now believe that Neanderthals were replaced by a new wave "out of Africa" ~ 100,000 yrs ago. Alternative: Multiregional model Separate groups of H. erectus leading to H. Sapiens (looks less likely)


Evidence: Genetic, linguistic, fossil


Genetic: humans are **very** homogeneous greatest diversity is in Africa


⇒ Evolved in Africa, population bottleneck a small group left Africa, spread over Earth

Linguistic: Good correlation of linguistic family tree with genetic one

Fossil: Oldest fossils of modern H. sapiens are found in Africa

Neanderthals and Us

- In 2009, analysis of DNA from Neanderthals
 - 38,000 yr old fossils from cave in Croatia
 - Very difficult to avoid contamination
 - Early evidence of inter-breeding with modern H. sapiens due to contamination
 - Now little evidence of inter-breeding
 - Despite long overlap in time and space
 Last to survive maybe 38,000 yr ago on Gibralter
 - Science 13 February 2009:
 Vol. 323. no. 5916, pp. 866 871

From J. Diamond: Guns, Germs & Steel

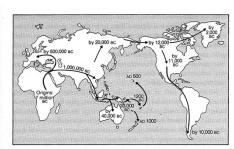


Figure 1.1. The spread of humans around the world.

Questions

- What **selected** for the increase in brain size over the last 6 Myr?
 - · Adaptation to climate changes?
 - · Cooperation and language (large-animal hunting)?
 - Intergroup conflict?
- 3. What limited the increase?
 - Size of birth canal (bipedalism decreases size)
 - · Birth when less developed, so more care needed
 - · Consequences of need for more care
 - pair bonding, more parental care available
 - slower development led to greater intelligence?

- How intelligent are other species?
 (Chimpanzees, gorillas, ... dolphins, whales)
 Recent evidence for weapon construction and use by Chimpanzees.
- What features of H. sapiens would we expect in ETI?
 Bilateral symmetry, bear young alive, bipedal, opposable thumb, ...

 $f_c = ?$

Contingency

Does evolution produce greater complexity?
What would happen if we replayed the tape with random changes?

Stephen J. Gould vs. Conway Morris

Contingency vs. convergent evolution

Extinction of Other precursors Early Chordata

No intelligence in other shapes

Estimating f_{ι}

Galactic habitable zone (GHZ)
 Gonzales, Ward, Brownlee
 and Ward and Brownlee in *Rare Earth*

Complex life requires more benign conditions more stars closer to center of galaxy (stars closer together) Supernovae, X-rays, Gamma-rays could extinct complex life
Too few heavy elements in outer galaxy (would affect f

or n_e). If "animal" life has to avoid inner galaxy, this would decrease f_{ℓ}

2. Timescales

Time to evolve human-level intelligence

- ~ 1/2 lifetime of stars like Sun
- \Rightarrow rule out much more massive stars (already done in n_e)
- ~ 1/2 lifetime of galaxy so far
- ? \Rightarrow intelligent life is rare

Brandon Carter

? Statistics of one are suspect