
The Transition to Life

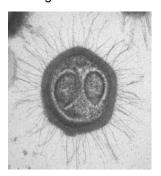


# Based on Simplest Life Now:

#### Need:

Nucleic Acids
 Proteins
 Lipids
 Carbohydrates (Pigments)

Replicable Information
Enzymes (Catalysts)
Membranes (Enclosure)
Energy Storage (Energy Conversion)


Too much to ask of chemical evolution

 $\Rightarrow$  Protolife?

Update: Mimivirus

- · A very large virus was discovered in 2003
- Both RNA and DNA
- More DNA than some bacteria (> 1000 genes)
- · Genes for translation, DNA repair enzymes
- · Leading to reevaluation of viruses
- May be ancient lineages
  - Precursors to bacteria, or eukaryotes
  - Controversial

# Image of Mimivirus



## Protolife

"Virus" Free living but equivalent in complexity
 Protein + Nucleic Acid + Supply by Environment
 Genetic Code

2. Protein ProtolifeProtein → Self Replication?

Nucleic Acid Protolife
 RNA → Self Catalysis?

Something Else
 Minerals
 Clay Layers
 Mineral - Molecule
 Pyrite
 Thioesters

Genetic Takeover
? → RNA → DNA

## Protein-Based Protolife

 $\begin{array}{cccc} \text{1.} & \text{Proteinoid microspheres - Sidney Fox} \\ & \text{Amino Acids + Dry Heat} & & & \text{Proteinoids} \\ & & & \text{(Hot Tidepool?)} & & & \downarrow \text{H}_2\text{O (Tide)} \\ & & & & \text{Microspheres} \\ \\ & \text{Protocells} \end{array}$ 

Protolife? Bacteria

Can Add Proteinoid Grow

Split Divide "Reproduce"

Bud Bud Bud Form Chains Form chains

But "Reproduction" not exact
Later incorporate Nucleic Acids
Proteinoid → Cells → Genes

Problem: How to incorporate Nucleic acids?

## Picture of Proteinoid Microspheres



FIGURE 5.15 — Photograph of proteinoid microspheres produced by repeated energizing and dehydrating the primordial soup. The main features of this figure can be simulated by shaking a mixture of oil and water and watching the globs of oil cluster on the surface of the water. Seen here through a microscope, each microsphere contains a larget concentration of amino acids. (The scale shown, 2.5 microns, equals 2.5x10-4 cm.) (Sidney Fox)

#### Nucleic Acid Based Protolife

 $\begin{array}{ccc} \text{RNA} & \longrightarrow & \text{Genes} \longrightarrow & \text{Protein} \longrightarrow & \text{Cells} \\ \text{Self-replicating RNA molecules} \\ \text{Experiment by Sol Spiegelman} \\ \text{RNA from } Q_{\beta} \text{ Virus - parasite on bacteria} \\ \text{Injects RNA - Bacterium makes replicase} \\ & & \text{Enzyme to Replicate RNA} \end{array}$ 

RNA multiplies, using activated nucleotides in bacterium to copy RNA and make new viruses

In Test Tube: Template RNA, Replicase, Activated Nucleotides (ATP, CTP, GTP, UTP)

⇒ RNA copied without machinery of cell

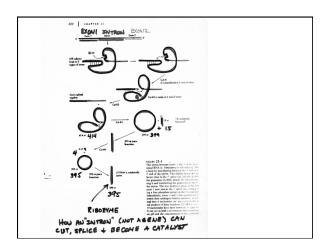
Variation: No template RNA

Replicase made RNA from nucleotides

Protein

Manfred Eigen - further experiments with RNA in test tube:

Mutant RNA strands compete
Degrade to smallest (~ 200 nucleotides)
RNA that replicase could recognize
(Monster - Selfish RNA)


RNA can do self-catalysis in some cases

Could this have led to self replication?

# Eigen scenario

- A replicating RNA molecule forms by chance (random replicator - not a gene) ribozyme (catalyst, made of RNA)
- 2. Family of **similar** RNA's develops (quasispecies)
- Connection to proteins
   (quasispecies specialize to make parts of protein)

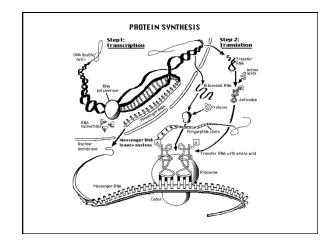
- 4. Complex interactions (hypercycles)
- 6. Use lipids to make protocells
- 6. Competition leads to biological evolution



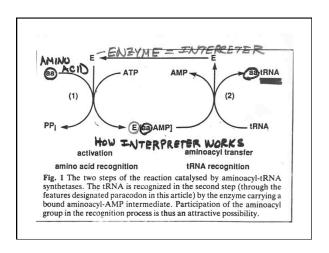
# Problems with Nucleic Acid First Scenario

- 1. Hard to get monomers
- 2. Unlikely to link correctly
- 3. Need existing proteins and lipids
- 4. Hypercycles subject to instabilities  $N=\text{size of molecular population} \label{eq:N}$

If N small
Population Collapse
Selfish RNA
Short Circuit


A — B

 $\mathsf{D} \longleftarrow \mathsf{C}$ 


If  $B \to D$  Short Circuit  $\Rightarrow$  Only narrow range of sizes works

# The Origin of the Genetic Code

- We need more than either protein or RNA protolife
- · Need interaction via genetic code
- Need translation
- · Let's recall what is needed for translation...



# Shapiro's Fable The case for the "chicken" Protein first ⇒ replication problem "interpreters" aminoacyl tRNA synthetases Match tRNA & Amino acids Could an earlier version have copied proteins directly?



- Early Evolution: Start with 4-6 amino acid types, gradually add more enzymes increase in size and catalytic power
- 2. First use of phosphate as energy? (ATP) or sugar-phosphate chains for construction (Teichoic acids in membranes of some bacteria) (partial  $Q_{\beta}$  replicase)
- Bases added for structure
   Support for protein synthesis ribosome

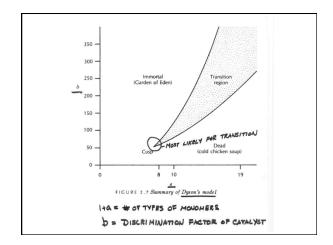
- 4. Begin to copy RNA (Full  $Q_{\beta}$  replicase) Natural selection leads to better ribosome
- 5. Specialized, Short RNA aided attachment of amino acids to proteins; became tRNA
- 6. Then mRNA to align tRNA's now a separate genetic system that evolves
- 7. DNA developed from RNA

Shapiro dates last step to prokaryote -eukaryote split (different ways of storing DNA info)

#### Tests:

- 1. Synthesize in lab? Not possible yet.
- Molecular archaeology vestigial ability of interpreters to recognize amino acids in proteins
- 3. Survivors of protein era? prions?

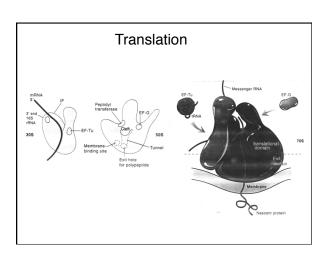
## Support for the "chicken"


- 1. 1988 discovery that interpreter does not use tRNA codon to recognize correct tRNA (in some cases) ~ 1/2
  - instead a single base pair at the other end of tRNA  $\,$
  - ⇒ simpler, older code second genetic code
  - ⇒ connection of interpreter and tRNA more primitive than current code

2. Dyson modeling of molecular "populations"

Transition from disorder to order (non-life) (life)

Finds number of monomer types likely to be 9-11 (ok if used  $\sim 1/2$  of modern proteins) But nucleotides (only 4) - not enough


Favors protein first



# The Egg Strikes Back

Other work shows some RNA can catalyze Non-RNA reactions

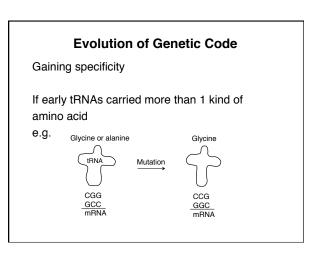
- RNA in ribosome appears to be what catalyzes peptide bond formation Noller, et al. 1992, Science, 256, 1416
- RNA "ribozyme" catalyzes reactions between amino acids and tRNAs
   First "interpreter" may have been RNA Piccirilli, et al. 1992, Science, 256, 1420



# Origin of the Genetic Code

Crucial step in any theory

Early versions probably coded fewer amino acids - less specific


| First<br>RNA<br>Base | U                | С         | Α             | G          | Third<br>RNA<br>BASE |
|----------------------|------------------|-----------|---------------|------------|----------------------|
|                      | Phenylalanine    | Serine    | Tyrosine      | Cysteine   | U                    |
|                      | Phenylalanine    | Serine    | Tyrosine      | Cysteine   | C                    |
| U                    | Leucine          | Serine    | Stop          | Stop       | A                    |
|                      | Leucine          | Serine    | Stop          | Tryptophan | G                    |
| С                    | Leucine          | Proline   | Histidine     | Arginine   | U                    |
|                      | Leucine          | Proline   | Histidine     | Arginine   | C                    |
|                      | Leucine          | Proline   | Glutamine     | Arginine   | Α                    |
|                      | Leucine          | Proline   | Glutamine     | Arginine   | G                    |
| Α                    | Isoleucine       | Threonine | Asparagine    | Serine     | U                    |
|                      | Isoleucine       | Threonine | Asparagine    | Serine     | С                    |
|                      | Isoleucine       | Threonine | Lysine        | Arginine   | Α                    |
|                      | Start/Methionine | Threonine | Lysine        | Arginine   | G                    |
| G                    | Valine           | Alanine   | Aspartic Acid | Glycine    | U                    |
|                      | Valine           | Alanine   | Aspartic Acid | Glycine    | С                    |
|                      | Valine           | Alanine   | Glutamic Acid | Glycine    | Α                    |
|                      | Valine           | Alanine   | Glutamic Acid | Glycine    | G                    |
|                      |                  |           |               |            |                      |

Some evidence for RNY and G - C more stable

Pyrimidine

4 codons GGC glycine
GCC alanine
GAC aspartic acid
GUC valine

Others added later



Evidence that code has evolved Freeland, et al. Tested 10<sup>6</sup> other codes

Only one better at minimizing bad effects of mutations

⇒ Natural Selection

Still Evolving

Some organisms have slightly different codes in mitochondria or in nucleus

# Summary

- · Transition to life is poorly understood
- · Need to consider "protolife"
- · Can we get by with only one polymer?
  - If so, protein or RNA
  - If so, how do we get genetic code going?