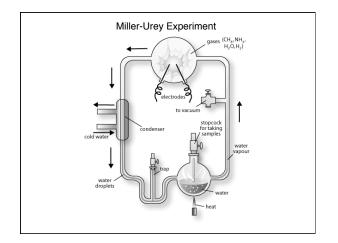
Origin of Life: I Monomers to Polymers

Questions

- What two kinds of molecules are essential for all life on Earth?
- What building blocks are these two molecules made of?

Synthesis of Monomers

Life arose early on Earth


Conditions

- 1. Liquid Water
- 2. Reducing or Neutral Atmosphere
- 3. Energy Sources

 Reducing atmosphere NH₃, CH₄, H₂O, H₂
 Miller-Urey Experiment

3. Energy Sources

Ultraviolet Light (No Ozone) Lightning Geothermal (Lava, Hot Springs, Vents, ...)

COMPOUND		
	Relative Yield	
Glycine	270	
Sarcosine	21	
Alanine	145	
N-methylalanine	4	
Beta-alanine	64	
Alpha-amino-n-b	utyric acid 21	
Alpha-aminoisob	utyric acid 0.4	
Aspartic acid	2	
Glutamic acid	2	
Iminodiacetic aci	d 66	
Iminoacetic-prop	ionic acid 6	
Lactic acid	133	
Formic acid	1000	
Acetic acid	64	
Propionic acid	56	
Alpha-hydroxybu	ityric acid 21	
Succinic acid	17	
Urea	8	
N-methyl urea	6	

How did Amino Acids form in Miller-Urey Experiment?

Strecker Synthesis

CH₄, H₂, NH₃ + Energy — H₂CO, HCN, HC₃N,
e.g. Glycine Synthesis Urea (H₂ NCONH₂)

Reactive

H₂CO + NH₃ + HCN — H

H

Aminoacetonitrile

$$\begin{array}{c} H \\ H \\ N-C-C=N+H_2O+H_2O \\ \hline \\ H \\ \end{array} \begin{array}{c} H \\ N-C-C \\ + NH_3 \\ \hline \\ H \\ \end{array}$$

Problems with Miller-Urey

Atmosphere was N2, CO2, H2O

NH₃, CH₄ would react to make N₂, CO₂

Try N_2 , CO_2 , H_2O in Miller-Urey simulation

Only get trace amounts of glycine Need CH₄ to get more complex amino acids

Need $H_2/CO_2 > 2$ to get much of any amino acid

Miller-Urey with Cosmic Rays

A group in Japan has obtained good yields of amino acids from slightly reducing gases (CO $_2$, CO, N $_2$, H $_2$ O)

When they used high energy protons (simulate cosmic rays)

Apparently not Strecker Synthesis (Low abundance of aminoacetonitrile)

Building Blocks of Nucleic Acids

Not formed in Miller-Urey, but some intermediates were

- 1. Ribose Sugar:
- 2. Bases
 - a) Purines 5 HCN \rightarrow H₅C₅N₅ (Adenine)
 - b) Pyrimidines

 $HC_3N + Urea \longrightarrow H_5C_4N_3O$ (Cytosine)

(1995) Cyanoacetaldehyde + Urea → Uracil

3. Phosphate Rock Erosion

Origin of building blocks of nucleic acids is less understood than amino acids

Alternative Sites

Locally reducing environments

Ocean vents
 Sources of CH₄ and H₂S
 Current Vents have ecosystems based on energy from chemicals - not photosynthesis
 H₂S → Bacteria → Clams, Tube Worms
 Pre-biotic amino acid synthesis?

Alternative Delivery

Molecular clouds - strongly reducing, contain many molecules used in Miller-Urey (H_2 , NH_3 , H_2O , CH_4) and intermediates (HCN, H_2CO , HC_3N) and aminoacetonitrile (glycine precursor)

Problem: These would not have survived in part of disk where Earth formed

But interstellar ices can get incorporated into comets Evidence from similar molecules (e.g. C_2H_2 , CH_4 , CH_2 , CH_3 , CH_4

Clearly indicates interstellar chemistry

Cratering record on moon, ...

⇒ heavy bombardment early in history

Comets and their debris could have brought large amounts of "organic" matter to Earth (and probably some of the oceans)

Some evidence for non-biological amino acids in layer deposited after asteroid impact 65 million years ago

Amino Acids in Meteorites

- Amino acids are found in some classes of meteorites (carbon-rich ones)
- Recent analysis of some carbon-rich meteorites found in Antarctica
 - Richest source of amino acids so far
 - Up to 250 parts per million
 - Very clearly extraterrestrial (not contamination)
 - · Type of amino acids
 - $^{13}\mathrm{C}$ is enhanced (opposite of what life does)

Sources of Organic Molecules

Quantitative comparison by Chyba & Sagan, Nature 1992, Vol. 355, p. 125

Currently, Earth accretes $\sim 3.2~\times 10^6~kg~y^{-1}$ from interplanetary dust particles (IDP)

- $\sim 10\%$ organic carbon $\Rightarrow 3.2 \times 10^5 \text{ kg y}^{-1}$
- $\sim 10^3 \text{ kg y}^{-1} \text{ comets}$ $\sim 10 \text{ kg y}^{-1} \text{ meteorites}$

 $\sim 10^3 \times \text{more at } 4.5 \times 10^9 \text{ yr ago}$ (?) (cratering record) UV + reducing atmosphere $2 \times 10^{11} \text{ kg y}^{-1}$ But if $H_2/CO \le 0.1$ IDP's dominant source

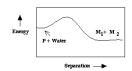

So if atmosphere very neutral, IDP's may have been important

Most of mass in IDP's in range of size \sim 100 μm mass $\sim 10^{-5}$ g

Complex structure - composites of smaller grains some carbon rich

Enhanced deuterium implies low T

Deuterium enhancement also found in interstellar molecules May imply connection back to interstellar chemistry



For example...

The Austin Marathon Fireball

Synthesis of Polymers

 $\begin{array}{c} M_1 + M_2 \longrightarrow \ P + H_2O \\ \longleftarrow \ more \ likely \ in \ liquid \ H_2O \end{array}$

Solutions:

Remove H₂O (Drying, Heat)

Catalysts: Clays

Problem is worse for Nucleic acids because more complex

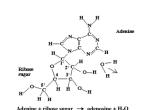
A

A

B

P

P


nucleoside

nucleoside

Monomers of nucleic acids

Synthesis of Adenosine

Base on 1' Carbon (Why?)

Also phosphates

3' & 5' carbons

Otherwise, you are likely to get Misalignment

Leslie Orgel has had some success in getting high percentage of correct linkages, in presence of Zinc ions.

Experimental Results

Sugar + base + heat yield some nucleosides

Activated nucleosides + phosphoric acid + Zn+2

Get polymers up to 50 nucleotides in length

linkages (mostly) correct

The Odds

- · We need to get an "interesting" polymer
 - Enzyme
 - Self replicator
- · Properties of polymer depend on
 - Order in which monomers combine
- · If we combine monomers at random,
 - How likely to get something interesting?

Statistics of an unlikely event

Random reactions in primordial soup? Unlikely event versus many trials Probability Primer: Consider tossing 10 coins

Probability of all heads = product of prob.

$$P = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \cdots \left(\frac{1}{2}\right)^{10} = \frac{1}{1024}$$

Probability of getting 10 amino acids → protein Chosen from 20 in a particular order

$$\left(\frac{1}{20}\right)^{10} = \frac{1}{1 \times 10^{13}}$$

Based on discussion by R. Shapiro

But if you try many times, the chance of success is higher

$$P(r) = \frac{n!}{r! (n-r)!} p^r (1-p)^{n-r}$$

r = # of successes p = prob. of success on each trial

n = # of trials

n! = n (n-1) (n-2) ... 1

e.g. make n =
$$\frac{1}{p}$$
 (flip all 10 coins 1024 times)
P(1) = $\frac{n!}{1!(n-1)!} (\frac{1}{n}) (1 - \frac{1}{n})^{n-1} = 0.37$

Chance of one or more successes = 0.63

For reasonable chance need $n \sim \frac{1}{p}$

How many do we have to get right?

1. How many atoms?

 Lipids
 $10^2 - 10^3$

 Enzymes, RNA
 $10^3 - 10^5$

 Bacterial DNA
 $10^8 - 10^9$

 Bacterium
 $10^{11} - 10^{12}$

 Human Being
 $10^{27} - 10^{28}$

If we choose from H,C, N, O (ignore S,P)

probability of right choice 1/4So for enzyme: $(\frac{1}{4})^{10^3} \sim 10^{-600}$ # of trials: R. Shapiro computes

 $N = 2.5 \times 10^{51}$ (surely an overestimate)

 $n \ll \frac{1}{p}$ for <u>simple</u> enzyme

2. What if we start with amino acids? Need $\sim 10^{13}$ trials to get 10 amino acid protein

To get 200 amino acids in right order

$$\left(\frac{1}{20}\right)^{200} = 10^{-260}$$
 Hopeless!

Need something besides random combinations Selection (Natural?)

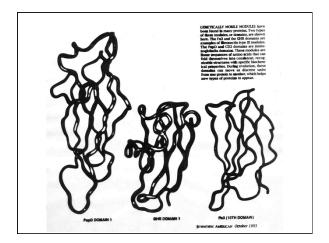
Improving the Odds

Many proteins composed of interchangeable segments (Domains)

10 to 250 amino acids

One domain found in ~ 70 different proteins

Intermediate building blocks?


If so, may only need to get enough amino acids in right order for a domain

e.g. 18 amino acid domain

$$P = \left(\frac{1}{20}\right)^{18} = 10^{-23}$$

Also, many variations in amino acids don't destroy function

and many different sequences may be interesting

Scientific American Doolittle & Bork

Oct. 1993, pg. 50

Proteins made of domains, assembled in various ways 10-250 amino acids for ones containing disulfide bonds

18 - 100 for those without

Of all amino acids available

 $\binom{1}{20}^{40}$ or

= - 52

 $\log_{10} = 40 \log 20$

 $\frac{1}{2}$ 20 $\frac{1}{2}$ -18 log 20 $\frac{1}{2}$ = -23.4

so 10⁻⁵² 10^{-23.4}

Interesting fact on how the improbable happens
1st winner of Texas Lotto lottery
Picked all 6 numbers correctly in the same
order as they were drawn.

Each number runs from 1 to 50, and once chosen, cannot be repeated (balls are taken from a box).

So the odds against getting them in order is

 $\binom{1}{50}\binom{1}{49}\binom{1}{48}\binom{1}{47}\binom{1}{46}\binom{1}{45} = \frac{1}{11,441,304,000}$

You don't need to get them in the same order to win odds against winning include any combination, so 1 in 16 million