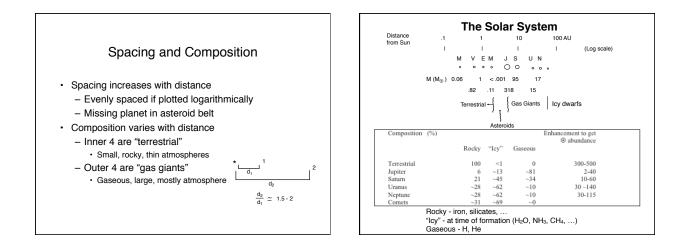
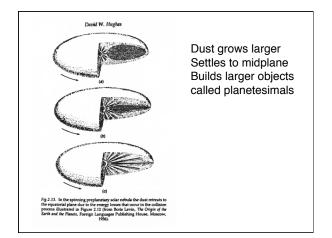

Origin of Planets

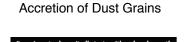

Our Solar System as Example

- We know far more about our solar system than about any other
- It does have (at least) one planet suitable for life
- · Start with facts about the solar system
- Then discuss theories of planet formation

General Properties of the Solar System

- Dynamical Regularities
 - Planet orbits in plane, nearly circular
 - Planets orbit sun in same direction (CCW as seen from North Pole)
 Rotation axes perpendicular to orbit plane
 Uranus is the avcortion
 - Uranus is the exception
 - Planets contain 98% of the angular momentumThe Sun contains 99.9% of the mass




What is a Planet? I. Small end...

- Pluto much smaller than others (0.002 M_{earth})
- Other, similar objects found in Kuiper Belt
 - Including one similar to Pluto (Eris)
 - First named Xena, renamed Eris, goddess of discord, has a moon, Dysnomia, goddess of lawlessness...
- · IAU voted in 2006
 - 1. Create a new category of dwarf planet
 - 2. Demote Pluto to a dwarf planet

Theories of Planet Formation

- · All start with rotating disk
 - Mass $0.01\,M_{\odot}$ or more
 - Sum of planet masses 0.001 M_{\odot}
 - Consistent with observed disk masses
 - Temperature and Density decrease with distance from forming star
 - Dust plays crucial role

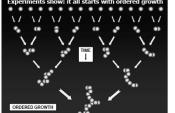
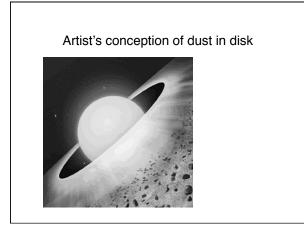
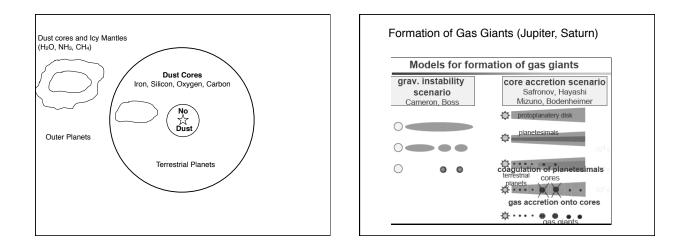
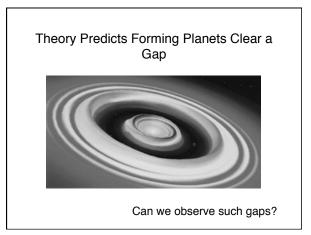
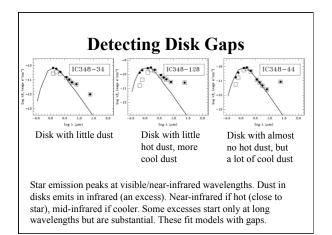
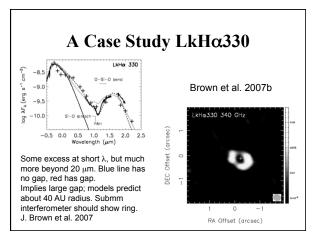
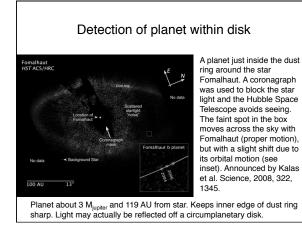




Fig. From talk by Jurgen Blum

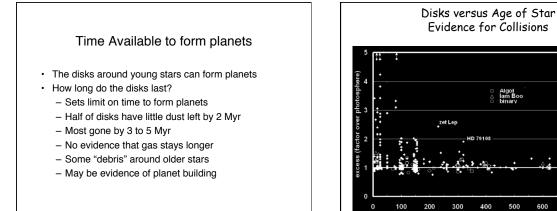

From Dust to Planets

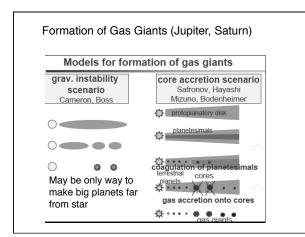

- Dust grains grow to planetesimals
- Planetesimals collide, grow larger
 Some dust returned in collisions
- · Icy dust in outer part of disk
 - Builds bigger, icier planets
- Internal heat turns ice to gas
- · If rock-ice core massive enough
 - Gravitational collapse of gas
 - Gas giants with ring/moon systems

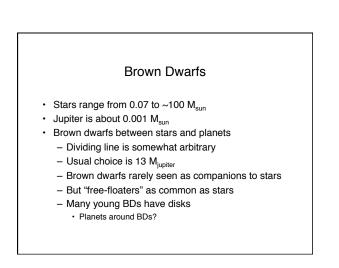



Predictions from Models

- Formation in rotating disk with icy dust can explain many facts about our solar system
- If we can generalize, expect planetary systems common
- Expect (?) about 10 planets, terrestrial planets in close, giant planets farther out, spaced roughly logarithmically
- May still be typical, but not universal...
- Big planets may clear a gap in disk







Issues for Planet Formation

- The time to build up the giant planets from dust particles is long in theories
 - Gas has to last that long to make gas giants
- How long do dust disks last?
 - How long does the gas last?
- · Are there faster ways to make planets?
- · What about planet building for binary stars?

Algol lam Boo binary

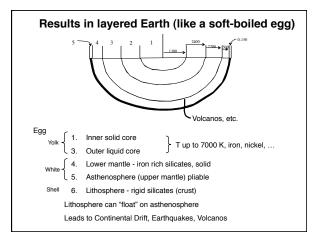
age (MYr) **MIDS**

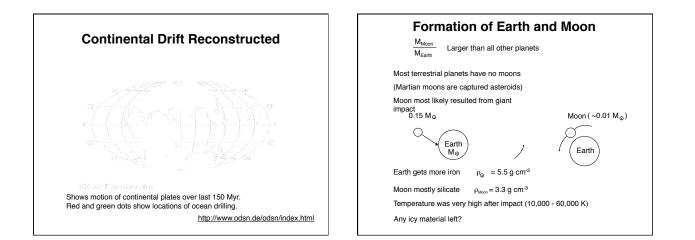
What is a Planet? II. High end...

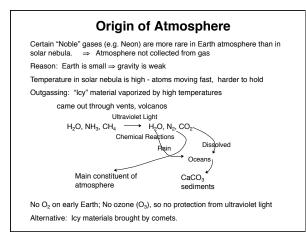
- Brown dwarfs now found to very low masses
 - Some clearly less than 13 M_{jupiter}
 - Can't even fuse deuterium
 - Some people call these planets
 - $\boldsymbol{\cdot}$ Some are less massive than known planets
 - Usual definition: planets orbit stars
 - · Some brown dwarfs may have "planets"
- Nature does not respect our human desire for neat categories!

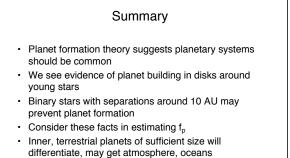
Binary Stars

- About 2/3 of all stars are in binaries
 Most common separation is 10-100 AU
- Can binary stars have disks?
 - Yes, but binary tends to clear a gap
 - Disks well inside binary orbit
 - Or well outside binary orbit


Other Active Issues


- · Other planetary systems are quite different
 - Big planets in close
- But this is probably due to selection effect
- · Locations may differ with mass of star
 - Ices survive closer to lower mass star
 - May get ice giants in close
 - Also planets may migrate inwards
 - May prevent formation of terrestrial planets


Formation of Earth


- · Almost entirely rocky material (iron, silicates)
- Radioactive elements heat interior
 Were produced in supernovae explosions
- Interior becomes molten, iron sinks to core
- Releases gravitational potential energy
- Interior even hotter
- Differentiated planet
- Collision forms Earth-Moon system
- · Earth acquires atmosphere
 - Outgassing and delivery by comets

• Earth may be unusual (big Moon by collision)