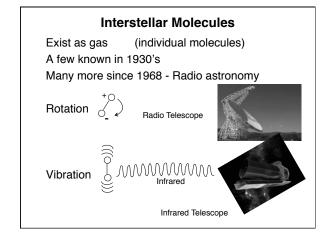
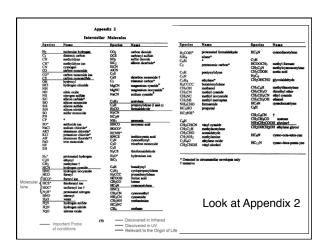

Cosmic Evolution, Part II

Heavy Elements to Molecules





Questions

- Why is room temperature around 300 K?
- How commonly is this temperature found in the Universe?

Important Examples:

Water

O H

Ammonia

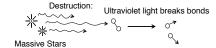
 NH_3

 H_2O

H C =

Others of Note: CO Most common after H_2 HCN, HC_3N , ... $HC_{11}N \rightarrow Carbon$ chains

H₂CO


CH₄ (Methane)

Formaldehyde

PAHs (Polycyclic aromatic hydrocarbons)

3 Lessons

- Complexity (Up to 13 atoms) is extraterrestrial
 May be more complex (Hard to detect)
 Glycine claimed in 1994, but, so far, not confirmed
 Polycyclic Aromatic Hydrocarbons (PAHs)
 (Infrared evidence)
- Dominance of Carbon
 Carbon Chemistry not peculiar to Earth
- 3. Formation & Destruction Analogous to early Earth

Protection by dust grains: scatter and absorb ultraviolet

Dust particles

Studies of how they scatter and absorb light (Ultraviolet \rightarrow Visible \rightarrow Infrared)

 \Rightarrow Two types, range of sizes up to 10⁻⁶ m

Carbon

Silicates

PAHs → Graphite

Si + O + Mg, Fe, ...

~ Soot

Both Produced by old stars

Formation of Interstellar Molecules

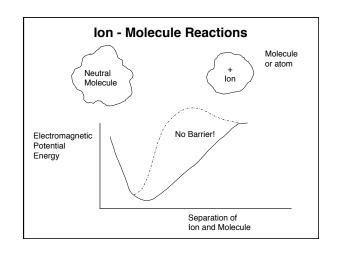
1. H₂

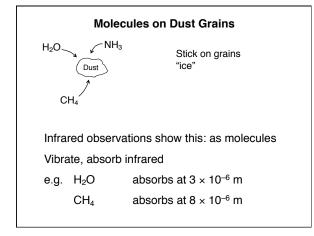
Must lose the potential energy difference before it falls apart ($\sim 10^{-14} \text{ s}$)

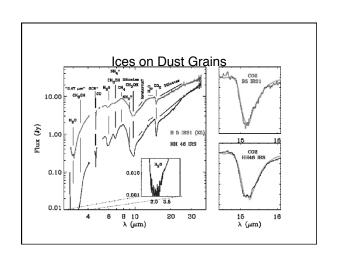
Collisions: OK in lab, too slow in space

Emit photon: <u>very</u> slow for H_2 (10⁷ s) H + H + catalyst = H_2 + catalyst

surface of dust grain







Formation of Interstellar Molecules

More complex molecules
 Problem is activation energy barrier
 T ~ 10 K << Barrier</p>
 Use reactions without activation energies
 e.g. Molecular ions, like HCO+

Implications

- 1. Similar (Carbon-Dominated) Chemistry
- 2. Direct Role in Origin of Life?
- 3. Formation + Destruction analogous to Early Earth

Roles of Dust ____

- 1. Protection from UV
- 2. H₂ Formation
- Freeze-out → Mantles of Ice H₂O, NH₃, CH₄, CO₂, HCOOH, ... ↑ Methane

Star Formation

First factor in Drake Equation: The rate of star formation

Estimate of Average Star Formation Rate (R*)

$$R_{\star} = \frac{\text{\# of stars in galaxy}}{\text{lifetime of galaxy}} = \frac{N_{\star}}{t_{gal}}$$

N_{*}: Count them? No
Use Gravity (Newton's Laws)

Sun orbiting center of galaxy at 250 km s⁻¹ (155 miles per second) update: 269 km s⁻¹ reported in Jan. 2009

Kinetic energy = $\frac{1}{2}$ gravitational potential energy

$$\frac{1}{2} \ M_{\odot} \ v^2 \ = \ \frac{1}{2} \ \frac{G \ M_g \ M_{\odot}}{R_g} \underbrace{\hspace{1cm} \text{Distance of Sun}}_{\text{from center of galaxy}}$$

$$\frac{R_g v^2}{G} = M_g$$

Estimate of Average Star Formation Rate (R*)

$$(R_g = 25,000 \text{ ly}) \ \rightarrow \ M_g = 1.0 \times 10^{11} \ M_{\odot}$$
 Update: 28,000 ly gives 1.4 x 10¹¹ M_{\odot}

Add stars outside Sun's orbit \rightarrow M $_g \simeq 1.6 \times 10^{11} \ M_{\odot}$ Update: $2.0 \times 10^{11} \ M_{\odot}$

$$N_{\star} \simeq \frac{M_g}{\text{Avg. mass of star}} = \frac{1.6 \times 10^{11}}{0.4} = 4 \times 10^{11} \text{ (5 x 10^{11})}$$

$$t_{gal} \simeq 10^{10} \text{ yr}$$
 (studies of old stars)

R_{*}
$$\simeq \frac{4 \times 10^{11}}{10^{10}}$$
 stars = 40 stars per year (5 - 50)
Update: 50 stars per year

Complicating factors

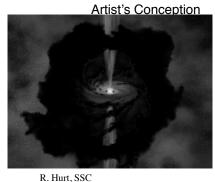
50 stars per year is an average over history of Milky Way. Current rate is about 5 stars per year. Probably stars formed more rapidly early in history of Milky Way. Any number between 5 and 50 may be correct for our purposes.

Recent work suggests total mass of Milky Way is 3 trillion solar masses ($3 \times 10^{12} M_{\odot}$). This is mostly dark matter outside the orbit of the Sun.

Star Formation

Current Star Formation

Molecular Clouds

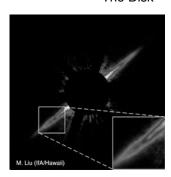

- Composition
 - H₂ (93%), He (6%)
 - Dust and other molecules (~1% by mass)
 - CO next most common after H₂, He
- · Temperature about 10 K
- Density (particles per cubic cm)
 - $\sim 100 \text{ cm}^{-3} \text{ to } 10^6 \text{ cm}^{-3}$
 - Air has about 1019 cm-3
- Water about 3 x 10²² cm⁻³
 Size 1-300 ly
- Mass 1 to 10⁶ M_{sun}

A Small Molecular Cloud

Current Star Formation

- · Occurs in gas with heavy elements
 - Molecules and dust keep gas cool
 - Radiate energy released by collapse
 - Stars of lower mass can form
 - Mass needed for collapse increases with T
- · Star formation is ongoing in our Galaxy
 - Massive stars are short-lived
 - Star formation observed in infrared

Visible to Infrared Views

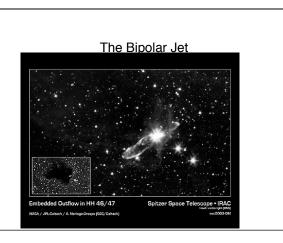


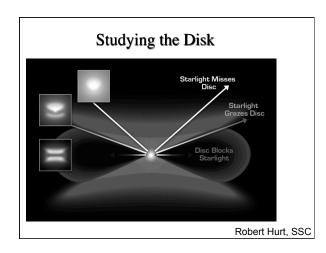
Features: Dusty envelope Rotation Disk Bipolar outflow

The Protostar

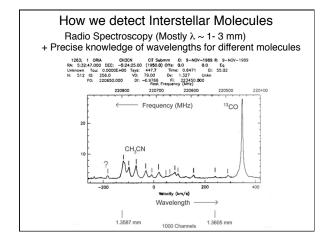
- · Evolution of the collapsing gas cloud
 - At first, collapsing gas stays cool
 - Dust, gas emit photons, remove energy
 - At n $\sim 10^{11}$ cm⁻³, photons trapped
 - Gas heats up, dust destroyed, pressure rises
 - Core stops collapsing
 - The outer parts still falling in, adding mass
 - Core shrinks slowly, heats up
 - Fusion begins at T $\sim 10^7$ K
 - Protostar becomes a main-sequence star

The Disk


The Star (AU Mic) is blocked in a coronograph.
Allows you to see disk. Dust in disk is heated by star and emits in infrared.


Angular Momentum

- · Measure of tendency to rotate
 - -J = mvr
- · Angular momentum is conserved
 - -J = constant
 - As gas contracts (r smaller), v increases
 - Faster rotation resists collapse
 - Gas settles into rotating disk
 - Protostar adds mass through the disk


The Wind

- · Accretion from disk will spin up the star
 - Star would break apart if spins too fast
- · Angular momentum must be carried off
- · The star-disk interaction creates a wind
- · The wind carries mass to large distances
 - J = mvr, small amount of m at very large r
 - Allows star to avoid rotating too fast
- · Wind turns into bipolar jet
 - Sweeps out cavity

Extra Slides if Time Permits

Molecules on Dust Grains

Icy "mantles" contain H, O, C, N
Further reactions possible → more complex molecules (e.g. Ethanol)

- → Building blocks of life ?
- → Life ??? Hoyle and Wickramasinghe

New stars and planets form in same regions