The Transition to Life

The Transition to Life

Chemical Evolution

? Biological

Interacting Chemicals

Reproduction of

Organisms

Natural Selection

Based on Simplest Life Now:

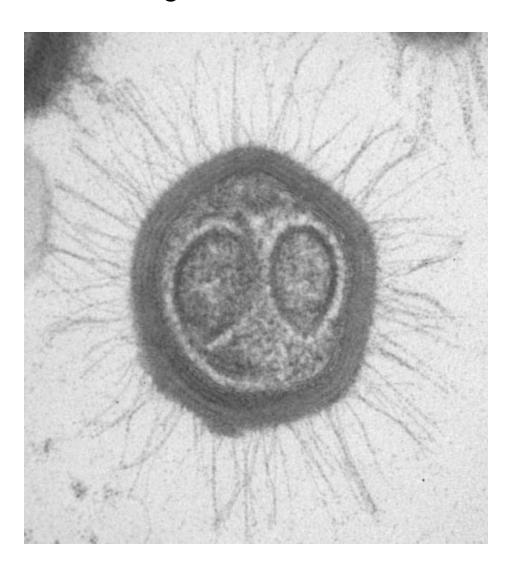
Need:

Nucleic Acids Replicable Information

2. Proteins Enzymes (Catalysts)

3. Lipids Membranes (Enclosure)

4. Carbohydrates Energy Storage(Pigments) (Energy Conversion)


Too much to ask of chemical evolution

⇒ Protolife?

Update: Mimivirus

- A very large virus was discovered in 2003
- Both RNA and DNA
- More DNA than some bacteria
- Genes for translation, DNA repair enzymes
- Leading to reevaluation of viruses
- May be ancient lineages
 - Precursors to bacteria, etc.
 - Controversial

Image of Mimivirus

Protolife

"Virus" Free living but equivalent in complexity

Protein + Nucleic Acid + Supply by Environment

Genetic Code

- Protein ProtolifeProtein Self Replication?
- 3. Nucleic Acid Protolife

 RNA Self Catalysis?

4. Something Else

Minerals

Clay Layers

Mineral - Molecule

Pyrite

Thioesters

Genetic Takeover

? \longrightarrow RNA \longrightarrow DNA

Protein-Based Protolife

1. Proteinoid microspheres - Sidney Fox

Amino Acids + Dry Heat — Proteinoids

(Hot Tidepool?) ↓ H₂O (Tide

Microspheres

Protocells

Protolife? (Look like life)

Can Add Proteinoid Grow

Split Divide "Reproduce"

Bud Bud

Form Chains Like Bacteria

But "Reproduction" not exact

Later incorporate Nucleic Acids

Proteinoid Cells Genes

Problem: How to incorporate Nucleic acids?

Picture of Proteinoid Microspheres

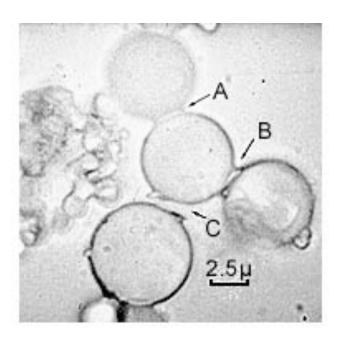


FIGURE 5.15 — Photograph of proteinoid microspheres produced by repeated energizing and dehydrating the primordial soup. The main features of this figure can be simulated by shaking a mixture of oil and water and watching the globs of oil cluster on the surface of the water. Seen here through a microscope, each microsphere contains a large\ concentration of amino acids. (The scale shown, 2.5 microns, equals 2.5x10-4 cm.) (Sidney Fox)

Nucleic Acid Based Protolife

RNA Genes Protein Cells

Self-replicating RNA molecules

Experiment by Sol Spiegelman

RNA from Q_β Virus - parasite on bacteria

Injects RNA - Bacterium makes replicase

Enzyme to Replicate RNA

RNA multiplies, using activated nucleotides in bacterium to copy RNA and make new viruses

In Test Tube: Template RNA, Replicase, Activated Nucleotides (ATP, CTP, GTP, UTP)

⇒ RNA copied without machinery of cell

Variation: **No** template RNA

Replicase made RNA from nucleotides

Protein

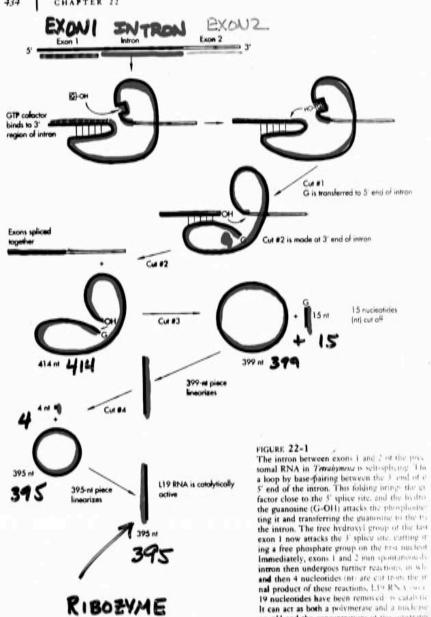
Manfred Eigen - further experiments with RNA in test tube:

Mutant RNA strands compete

Degrade to smallest (~ 200 nucleotides)

RNA that replicase could recognize

(Monster - Selfish RNA)


RNA can do self-catalysis in some cases

Could this have led to self replication?

Eigen scenario

- A replicating RNA molecule forms by chance (random replicator - not a gene) ribozyme (catalyst, made of RNA)
- 2. Family of **similar** RNA's develops (quasispecies)
- Connection to proteins
 (quasispecies specialize to make parts of protein)

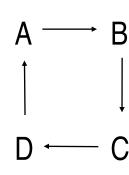
- 4. Complex interactions (hypercycles)
- 6. Use lipids to make protocells
- 6. Competition leads to biological evolution

HOU AN "INTRON" (NOT AGENE) CAN
CUT, SPLICE + BE COME A CATALYST on pH and the concentrations of the substrates

Problems with Nucleic Acid First Scenario

- 1. Hard to get monomers
- 2. Unlikely to link correctly
- 3. Need existing proteins and lipids
- 4. Hypercycles subject to instabilities

N = size of molecular population

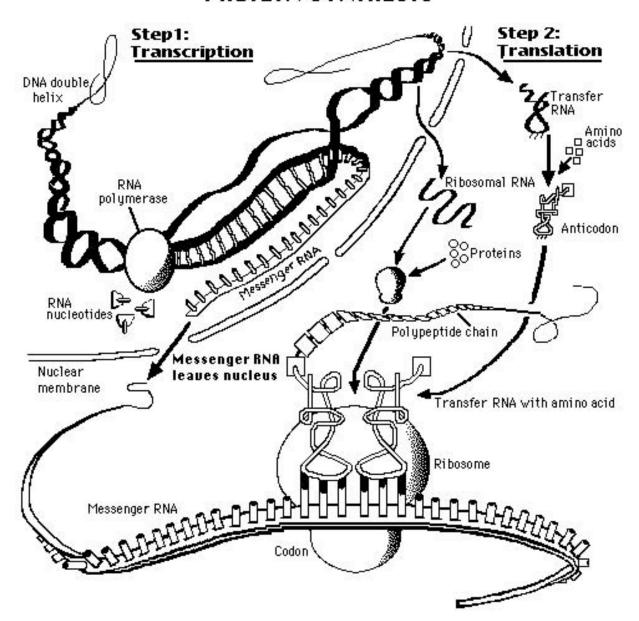

If N small

If N large

Population Collapse

Selfish RNA

Short Circuit


If B D Short Circuit

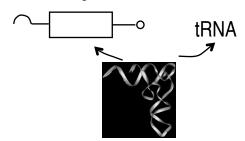
⇒ Only narrow range of sizes works

The Origin of the Genetic Code

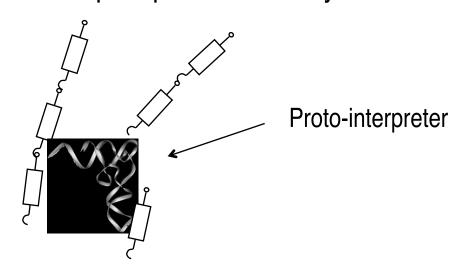
- We need more than either protein or RNA protolife
- Need interaction via genetic code
- Need translation
- Let's recall what is needed for translation...

PROTEIN SYNTHESIS

Shapiro's Fable


The case for the "chicken"

Protein first ⇒ replication problem


"interpreters" aminoacyl tRNA synthetases

Match tRNA &

Amino acids

Could an earlier version have copied proteins directly?

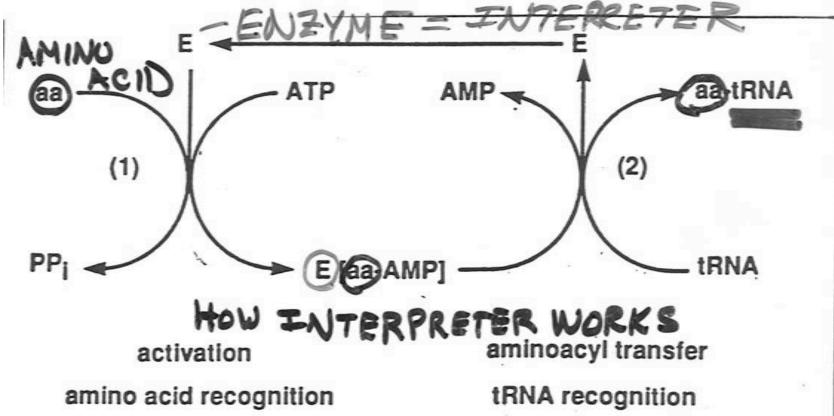


Fig. 1 The two steps of the reaction catalysed by aminoacyl-tRNA synthetases. The tRNA is recognized in the second step (through the features designated paracodon in this article) by the enzyme carrying a bound aminoacyl-AMP intermediate. Participation of the aminoacyl group in the recognition process is thus an attractive possibility.

- Early Evolution: Start with 4-6 amino acid types, gradually add more enzymes increase in size and catalytic power
- 2. First use of phosphate as energy? (ATP) or sugar-phosphate chains for construction (Teichoic acids in membranes of some bacteria) (partial Q_{β} replicase)
- 3. Bases added for structure

 Support for protein synthesis ribosome

- 4. Begin to copy RNA (Full Q_{β} replicase)

 Natural selection leads to better ribosome
- Specialized, Short RNA aided attachment of amino acids to proteins; became tRNA
- 6. Then mRNA to align tRNA's now a separate genetic system that evolves
- 7. DNA developed from RNA

Shapiro dates last step to prokaryote -eukaryote split (different ways of storing DNA info)

Tests:

- Synthesize in lab? Not possible yet.
- 3. Molecular archaeology vestigial ability of interpreters to recognize amino acids in proteins
- 3. Survivors of protein era? prions?

Support for the "chicken"

- 1. 1988 discovery that interpreter does not use tRNA codon to recognize correct tRNA (in some cases) ~ 1/2
 - instead a single base pair at the other end of tRNA
 - ⇒ simpler, older code second genetic code
 - ⇒ connection of interpreter and tRNA more primitive than current code

Dyson modeling of molecular "populations"

Transition from disorder to order

(non-life) (life)

Finds number of monomer types likely to be 9 - 11 (ok if used ~ 1/2 of modern proteins) But nucleotides (only 4) - not enough

Favors protein first

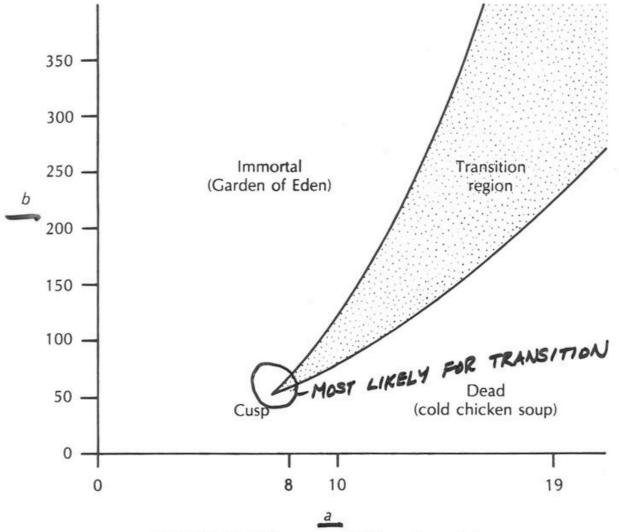
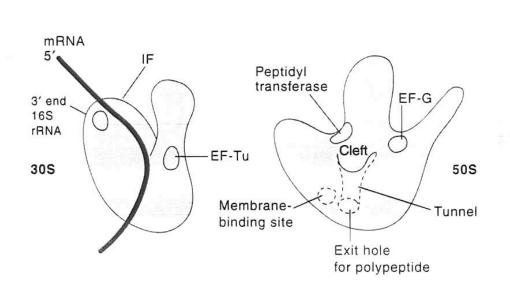
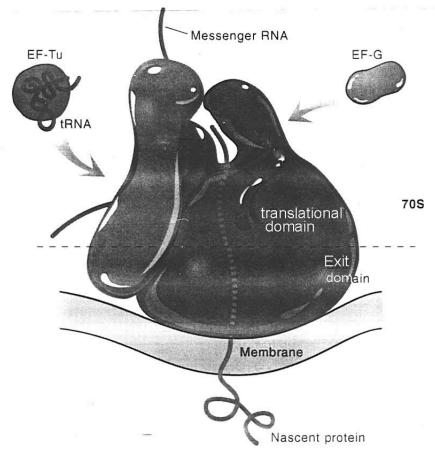


FIGURE 2.7 Summary of Dyson's model

1+a = # OF TYPES OF MONOMERS

b = Discrimination factor of Catalyst


The Egg Strikes Back

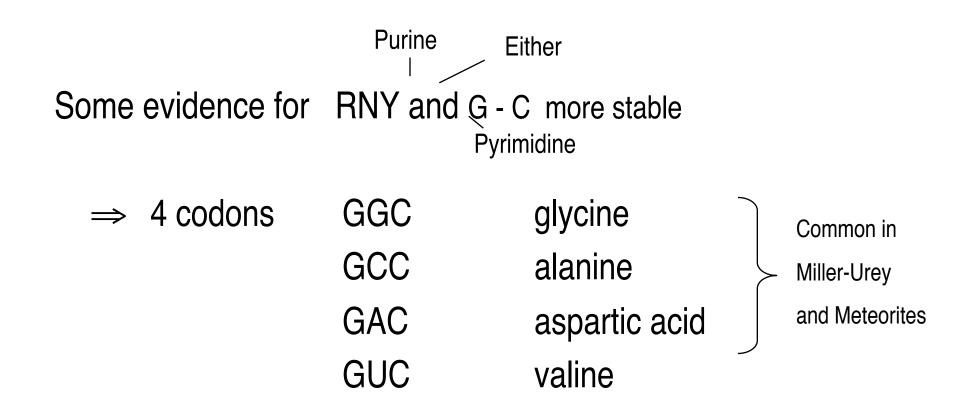

Other work shows some RNA can catalyze Non-RNA reactions

- 1. RNA in ribosome appears to be what catalyzes peptide bond formation Noller, et al. 1992, *Science*, **256**, 1416
- 2. RNA "ribozyme" catalyzes reactions between amino acids and tRNAs

First "interpreter" may have been RNA Piccirilli, et al. 1992, *Science*, **256**, 1420

Translation

Origin of the Genetic Code

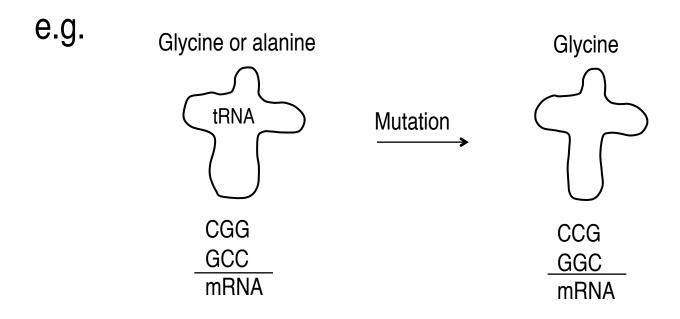

Crucial step in any theory

Allows communication

Nucleic Acids ← → Proteins

Early versions probably coded fewer amino acids - less specific

For mF	RNA Gene	Genetic Code			
First RNA Base	U	С	Α	G	Third RNA BASE
U	Phenylalanine	Serine	Tyrosine	Cysteine	U
	Phenylalanine	Serine	Tyrosine	Cysteine	C
	Leucine	Serine	Stop	Stop	A
	Leucine	Serine	Stop	Tryptophan	G
С	Leucine	Proline	Histidine	Arginine	U
	Leucine	Proline	Histidine	Arginine	C
	Leucine	Proline	Glutamine	Arginine	A
	Leucine	Proline	Glutamine	Arginine	G
Α	Isoleucine	Threonine	Asparagine	Serine	U
	Isoleucine	Threonine	Asparagine	Serine	C
	Isoleucine	Threonine	Lysine	Arginine	A
	Start/Methionine	Threonine	Lysine	Arginine	G
G	Valine Valine Valine Valine	Alanine Alanine Alanine Alanine	Aspartic Acid Aspartic Acid Glutamic Acid Glutamic Acid	Glycine Glycine Glycine Glycine	U C A G



Others added later

Evolution of Genetic Code

Gaining specificity

If early tRNAs carried more than 1 kind of amino acid

Evidence that code has evolved Freeland, et al. Tested 10⁶ other codes

Only one better at minimizing bad effects of mutations

⇒ Natural Selection

Still Evolving

Some organisms have slightly different codes in mitochondria or in nucleus

Summary

- Transition to life is poorly understood
- Need to consider "protolife"
- Can we get by with only one polymer?
 - If so, protein or RNA
 - If so, how do we get genetic code going?