Cosmic Evolution, Part II Heavy Elements to Molecules ## First a review of terminology: Neutral atom: # Electrons = # protons ion: e.g. C⁺² Carbon nucleus + 4 (6-2) electrons Molecule: Repulsive ~ Attractive More delicate than atoms, can be <u>much</u> more complex "Bond" is sharing of electrons Is molecule stable? Yes, if EM potential energy less than separate atoms Activation energy lower → T ~ 100 - 1000 K (Room Temperature) ## Questions - Why is room temperature around 300 K? - How commonly is this temperature found in the Universe? #### Conventions: $$H_2$$ $H-H$ \uparrow CO_2 $$O = C = O_{\nearrow}$$ Double Bonds Maximum # of Bonds: **⊣** 1 0 2 N 3 C 4 Carbon very versatile → Complex chemistry #### **Interstellar Molecules** Exist as gas (individual molecules) A few known in 1930's Many more since 1968 - Radio astronomy Rotation Vibration Radio Telescope Optical Telescope #### How we detect Interstellar Molecules Radio Spectroscopy (Mostly $\lambda \sim$ 1- 3 mm) + Precise knowledge of wavelengths for different molecules Appendix 2 Interstellar Molecules | Species | Name | Species | Name | |-------------------------------|-------------------------------------|-------------------------------|-------------------------| | H ₂ | molecular hydrogen | CO ₂ | carbon dioxide | | C ₂ | diatomic carbon | ocs | carbonyl sulfide | | CH | methylidyne | SO ₂ | sulfur dioxide | | CH+ | methylidyne ion | SiC ₂ | silicon dicarbidee | | CN | | SiCN | | | co | cyanogen | AICN | | | | carbon monoxide | C ₂ S | | | CO+ | carbon monoxide ion | C ₂ O | dicarbon monoxide † | | CS | carbon monosulfide | C ₃ | triatomic carbon® | | OH
HC1 | hydroxyl | | | | NH | hydrogen chloride | MgCN | magnesium cyanide | | NO
NO | missio amida | MgNC | magnesium isocyanide | | NS | nitric oxide | NaCN | sodium cyanide | | SiC | nitrogen sulfide
silicon carbide | 25672770 | | | SiO | silicon monoxide | C ₂ H ₂ | acetylene | | SiS | silicon sulfide | C ₃ H | propynylidyne (l and c) | | SiN | silicon nitride | H ₂ CO | formaldehyde | | SO | sulfur monoxide | H ₂ CN | | | PN | suita monoride | HC2N | | | CP | • | | | | SO+ | -1614-1 | NH ₃ | ammonia | | NaCl | sulfoxide ion | HNCO | isocyanic acid | | | sodium chloride* | HOCO+ | | | AICI | aluminum chloride* | HCNH+ | | | KCI | potassium chloride* | HNCS | isothiocyanic acid | | AIF
FeO | aluminum fluoride*† | C ₃ N | cyanoethynyl | | r e O
HF | iron monoxide | C ₃ O | tricarbon monoxide | | nr
SH | | C ₃ S | | | Sn | | H ₂ CS | thioformaldehyde | | | | H ₃ O ⁺ | hydronium ion | | H ₃ ⁺ | protonated hydrogen | | nyuromum ion | | C ₂ H | ethynyl | SiC ₃ | | | CH ₂ | methylene † | C ₄ H | L., 45, | | HCN | hydrogen cyanide | | butadiynyl | | HNC | hydrogen isocyanide | C ₃ H ₂ | cyclopropenylidene | | HCO | formyl | H ₂ CCC | propadienylidene | | HCO+ | formyl ion | нсоон | formic acid | | HCS+ | thioformyl ion | CH ₂ CO | ketene | | HOC+ | isoformyl ion † | HC ₃ N | cyanoacetylene | | | | HNC ₃ | | | N ₂ H ⁺ | protonated nitrogen | CH ₂ CN | cyanomethyl | | HNO | nitroxyl | NH ₂ CN | cyanamide | | H ₂ O | water | CH2NH | methanimine | | H ₂ S | hydrogen sulfide | HC2NC | | | H ₂ N | hydrogen nitride | CH ₄ | methene | | N ₂ O | nitrous oxide | U.14 | | 173 | Species | Name | Species | Name | |---|--|------------------------------------|----------------------| | H ₂ COH ⁺ | protonated formaldehyde | HC ₅ N | cyanodiacetylene | | SiHa | silane* | 52 | | | C ₄ Si | • | C ₇ H | | | C ₅ | pentatomic carbon* | HCOOCH ₃ | methyl formate | | | | CH ₃ C ₃ N | methylcyanoacetylene | | C ₅ H | pentynylidyne | CH ₃ COOH | acetic acid | | C ₅ N | #0.0-0 # 0.4 00 00 00 00 00 00 00 00 00 00 00 00 00 | H ₂ C ₆ | | | C ₂ H ₄ | ethylene* | CH ₂ OHCHO | głycolaldehyde | | H ₂ CCCC | butatrienylidene | | | | CH ₃ OH | methanol | CH ₃ C ₄ H | methyldiacetylene | | CH ₃ CN | methyl cyanide | CH ₃ CH ₃ O | dimethyl ether | | CH ₃ NC | methyl isocyanide | CH ₃ CH ₂ CN | | | CH ₃ SH | methyl mercaptan | CH ₃ CH ₂ OH | ethanol | | NH ₂ CHO | formamide | HC7N | cyanohexatriyne | | HC ₃ HO | propynal | CgH | (Z). | | HC3NH+ | | CH ₃ C ₄ CN | | | | | CH3CH3CO | 1 | | C ₆ H | | | acetone | | CH2CHCN | vinyl cyanide | NH2CH2COC | | | CH ₃ C ₂ H | methylacetylene | CH2OHCH2OH ethylene glycol | | | CH ₃ CHO | acetaldehyde | | | | CH ₃ NH ₂ | methylamine | HC ₉ N | cyano-octa-tetra-yne | | C ₂ H ₄ O
CH ₂ CHOH | ethylene oxide
vinyl alcohol | HC11N | cyano-deca-penta-yne | | | The transfer of the second sec | | | ^{*} Detected in circumstellar envelopes only Look at Appendix 2 Important Probe of conditions Molecular Ions — Discovered in Infrared - Discovered in UV - Relevant to the Origin of Life [†] tentative ## Important Examples: Water H₂O 0 Ammonia NH₃ N = H Formaldehyde H₂CO $H \subset C = O$ Others of Note: CO Most common after H₂ $HCN, HC_3N, ... HC_{11}N \rightarrow Carbon chains$ CH₄ (Methane) PAHs (Polycyclic aromatic hydrocarbons) #### 3 Lessons - Complexity (Up to 13 atoms) is extraterrestrial May be more complex (Hard to detect) Glycine ? 1994 so far, not confirmed Polycyclic Aromatic Hydrocarbons (PAHs) (Infrared evidence) - Dominance of Carbon Carbon Chemistry not peculiar to Earth - 3. Formation & Destruction Analogous to early Earth Protection by dust grains: scatter and absorb ultraviolet ## **Dust particles** Studies of how they scatter and absorb light (Ultraviolet → Visible → Infrared) \Rightarrow Two types, range of sizes up to 10⁻⁶ m Carbon Silicates PAHs \rightarrow Graphite Si + O + Mg, Fe, ... ~ Soot Both Produced by old stars ## **Formation of Interstellar Molecules** 1. H₂ Must lose the potential energy difference before it falls apart ($\sim 10^{-14}$ s) Collisions: OK in lab, too slow in space Emit photon: <u>very slow</u> for H_2 (10⁷ s) $$H + H + catalyst = H_2 + catalyst$$ surface of dust grain ## **Formation of Interstellar Molecules** ## 2. More complex molecules Problem is activation energy barrier T~10 K << Barrier Use reactions without activation energies e.g. Molecular ions, like HCO+ Energy + simple mol. → Reactive mol. More complex ## **Ion - Molecule Reactions** Separation of Ion and Molecule #### **Molecules on Dust Grains** Infrared observations show this: as molecules Vibrate, absorb infrared e.g. $$H_2O$$ absorbs at 3×10^{-6} m CH₄ absorbs at $$8 \times 10^{-6}$$ m #### **Molecules on Dust Grains** Icy "mantles" contain H, O, C, N Further reactions possible → more complex molecules (e.g. Ethanol) - → Building blocks of life ? - → Life ??? Hoyle and Wickramasinghe New stars and planets form in same regions # **Implications** - 1. Similar (Carbon-Dominated) Chemistry - 2. Direct Role in Origin of Life? - 3. Formation + Destruction analogous to Early Earth #### Roles of Dust _____ - 1. Protection from UV - 2. H_2 Formation - 3. Freeze-out \rightarrow Mantles of Ice H_2O , NH_3 , CH_4 , CO_2 , HCOOH, ... Methane ## Star Formation First factor in Drake Equation: The rate of star formation ## Estimate of Average Star Formation Rate (R), $$R_* = \# \text{ of stars in galaxy } = N_*$$ lifetime of galaxy t_{gal} N_{*}: Count them? No Use Gravity (Newton's Laws) Sun orbiting center of galaxy at 250 km s⁻¹ (155 miles per second) update: 269 km s⁻¹ reported in Jan. 2009 Kinetic energy = g_2^1 avitational potential energy $$\frac{1}{2}M_{\odot} v^{2} = \frac{1}{2} \frac{G M_{g} M_{\odot}}{R_{g}}$$ Distance of Sun from center of galaxy $$\frac{R_g v^2}{G} = M_g$$ ## Estimate of Average Star Formation Rate (R) $$(R_q = 25,000 \text{ ly}) \rightarrow M_q = 1.0 \times 10^{11} \text{ M}_{\odot}$$ Update: 28,000 ly gives 1.4 x 10¹¹ M_☉ Add stars outside Sun's orbit $ightharpoonup M_g \simeq 1.6 \times 10^{11} \, M_\odot$ Update: 2.0 x 10¹¹ M_☉ $$N_* \simeq M_g = 1.6 \times 10^{11} = 4 \times 10^{11} (5 \times 10^{11})$$ Avg. mass of star 0.4 $t_{gal} \simeq 10^{10} \, yr$ (studies of old stars) $$R_* \simeq 4 \times 10^{11} \text{ stars} = 40 \text{ stars per year } (5 - 50)$$ Update: 50 stars per year # Complicating factors 50 stars per year is an average over history of Milky Way. Current rate is about 5 stars per year. Probably stars formed more rapidly early in history of Milky Way. Any number between 5 and 50 may be correct for our purposes. Recent work suggests total mass of Milky Way is 3 trillion solar masses ($3 \times 10^{12} M_{\odot}$). This is mostly dark matter outside the orbit of the Sun. ## **Star Formation** **Current Star Formation** #### Molecular Clouds - Composition - H₂ (93%), He (6%) - Dust and other molecules (~1% by mass) - CO next most common after H₂, He - Temperature about 10 K - Density (particles per cubic cm) - $\sim 100 \text{ cm}^{-3} \text{ to } 10^6 \text{ cm}^{-3}$ - Air has about 10¹⁹ cm⁻³ - Water about 3 x 10²² cm⁻³ - Size 1-300 ly - Mass 1 to 10⁶ M_{sun} # A Small Molecular Cloud The "Black Cloud" B68 (VLT ANTU + FORS1) © European Southern Observatory + #### **Current Star Formation** - Occurs in gas with heavy elements - Molecules and dust keep gas cool - Radiate energy released by collapse - Stars of lower mass can form - Mass needed for collapse increases with T - Star formation is ongoing in our Galaxy - Massive stars are short-lived - Star formation observed in infrared ## The Launch of The Spitzer Space Telescope Spitzer Space Telescope Launched Aug. 2003, expect a 5 yr life. # Visible to Infrared Views **Artist's Conception** Features: Dusty envelope Rotation Disk Bipolar outflow R. Hurt, SSC #### The Protostar - Evolution of the collapsing gas cloud - At first, collapsing gas stays cool - Dust, gas emit photons, remove energy - At n $\sim 10^{11}$ cm⁻³, photons trapped - Gas heats up, dust destroyed, pressure rises - Core stops collapsing - The outer parts still falling in, adding mass - Core shrinks slowly, heats up - Fusion begins at $T \sim 10^7 \text{ K}$ - Protostar becomes a main-sequence star ## The Disk The Star (AU Mic) is blocked in a coronograph. Allows you to see disk. Dust in disk is heated by star and emits in infrared. ## **Angular Momentum** - Measure of tendency to rotate - -J=mvr - Angular momentum is conserved - J = constant - As gas contracts (r smaller), v increases - Faster rotation resists collapse - Gas settles into rotating disk - Protostar adds mass through the disk #### The Wind - Accretion from disk will spin up the star - Star would break apart if spins too fast - Angular momentum must be carried off - The star-disk interaction creates a wind - The wind carries mass to large distances - J = mvr, small amount of m at very large r - Allows star to avoid rotating too fast - Wind turns into bipolar jet - Sweeps out cavity # The Bipolar Jet # Studying the Disk Ices in a Protoplanetary Disc Spitzer Space Telescope • IRS ESO • VLT-ISAAC ssc2004-20c