Cosmic Evolution, Part II Heavy Elements to Molecules

First a review of terminology:

Neutral atom: # Electrons = # protons ion:

e.g. C⁺² Carbon nucleus + 4 (6-2) electrons

Molecule: Repulsive ~ Attractive

More delicate than atoms, can be <u>much</u> more complex

"Bond" is sharing of electrons
Is molecule stable?
Yes, if EM potential energy less than separate atoms

Activation energy lower → T ~ 100 - 1000 K (Room Temperature)

Questions

- Why is room temperature around 300 K?
- How commonly is this temperature found in the Universe?

Conventions:

$$H_2$$
 $H-H$ \uparrow CO_2

$$O = C = O_{\nearrow}$$
Double Bonds

Maximum # of Bonds:

⊣ 1

0 2

N 3

C 4

Carbon very versatile

→ Complex chemistry

Interstellar Molecules

Exist as gas (individual molecules)

A few known in 1930's

Many more since 1968 - Radio astronomy

Rotation

Vibration

Radio Telescope

Optical Telescope

How we detect Interstellar Molecules

Radio Spectroscopy (Mostly $\lambda \sim$ 1- 3 mm) + Precise knowledge of wavelengths for different molecules

Appendix 2
Interstellar Molecules

Species	Name	Species	Name
H ₂	molecular hydrogen	CO ₂	carbon dioxide
C ₂	diatomic carbon	ocs	carbonyl sulfide
CH	methylidyne	SO ₂	sulfur dioxide
CH+	methylidyne ion	SiC ₂	silicon dicarbidee
CN		SiCN	
co	cyanogen	AICN	
	carbon monoxide	C ₂ S	
CO+	carbon monoxide ion	C ₂ O	dicarbon monoxide †
CS	carbon monosulfide	C ₃	triatomic carbon®
OH HC1	hydroxyl		
NH	hydrogen chloride	MgCN	magnesium cyanide
NO NO	missio amida	MgNC	magnesium isocyanide
NS	nitric oxide	NaCN	sodium cyanide
SiC	nitrogen sulfide silicon carbide	25672770	
SiO	silicon monoxide	C ₂ H ₂	acetylene
SiS	silicon sulfide	C ₃ H	propynylidyne (l and c)
SiN	silicon nitride	H ₂ CO	formaldehyde
SO	sulfur monoxide	H ₂ CN	
PN	suita monoride	HC2N	
CP	•		
SO+	-1614-1	NH ₃	ammonia
NaCl	sulfoxide ion	HNCO	isocyanic acid
	sodium chloride*	HOCO+	
AICI	aluminum chloride*	HCNH+	
KCI	potassium chloride*	HNCS	isothiocyanic acid
AIF FeO	aluminum fluoride*†	C ₃ N	cyanoethynyl
r e O HF	iron monoxide	C ₃ O	tricarbon monoxide
nr SH		C ₃ S	
Sn		H ₂ CS	thioformaldehyde
		H ₃ O ⁺	hydronium ion
H ₃ ⁺	protonated hydrogen		nyuromum ion
C ₂ H	ethynyl	SiC ₃	
CH ₂	methylene †	C ₄ H	L., 45,
HCN	hydrogen cyanide		butadiynyl
HNC	hydrogen isocyanide	C ₃ H ₂	cyclopropenylidene
HCO	formyl	H ₂ CCC	propadienylidene
HCO+	formyl ion	нсоон	formic acid
HCS+	thioformyl ion	CH ₂ CO	ketene
HOC+	isoformyl ion †	HC ₃ N	cyanoacetylene
		HNC ₃	
N ₂ H ⁺	protonated nitrogen	CH ₂ CN	cyanomethyl
HNO	nitroxyl	NH ₂ CN	cyanamide
H ₂ O	water	CH2NH	methanimine
H ₂ S	hydrogen sulfide	HC2NC	
H ₂ N	hydrogen nitride	CH ₄	methene
N ₂ O	nitrous oxide	U.14	

173

Species	Name	Species	Name
H ₂ COH ⁺	protonated formaldehyde	HC ₅ N	cyanodiacetylene
SiHa	silane*	52	
C ₄ Si	•	C ₇ H	
C ₅	pentatomic carbon*	HCOOCH ₃	methyl formate
		CH ₃ C ₃ N	methylcyanoacetylene
C ₅ H	pentynylidyne	CH ₃ COOH	acetic acid
C ₅ N	#0.0-0 # 0.4 00 00 00 00 00 00 00 00 00 00 00 00 00	H ₂ C ₆	
C ₂ H ₄	ethylene*	CH ₂ OHCHO	głycolaldehyde
H ₂ CCCC	butatrienylidene		
CH ₃ OH	methanol	CH ₃ C ₄ H	methyldiacetylene
CH ₃ CN	methyl cyanide	CH ₃ CH ₃ O	dimethyl ether
CH ₃ NC	methyl isocyanide	CH ₃ CH ₂ CN	
CH ₃ SH	methyl mercaptan	CH ₃ CH ₂ OH	ethanol
NH ₂ CHO	formamide	HC7N	cyanohexatriyne
HC ₃ HO	propynal	CgH	(Z).
HC3NH+		CH ₃ C ₄ CN	
		CH3CH3CO	1
C ₆ H			acetone
CH2CHCN	vinyl cyanide	NH2CH2COC	
CH ₃ C ₂ H	methylacetylene	CH2OHCH2OH ethylene glycol	
CH ₃ CHO	acetaldehyde		
CH ₃ NH ₂	methylamine	HC ₉ N	cyano-octa-tetra-yne
C ₂ H ₄ O CH ₂ CHOH	ethylene oxide vinyl alcohol	HC11N	cyano-deca-penta-yne
	The transfer of the second sec		

^{*} Detected in circumstellar envelopes only

Look at Appendix 2

 Important Probe of conditions

Molecular Ions

— Discovered in Infrared

- Discovered in UV

- Relevant to the Origin of Life

[†] tentative

Important Examples:

Water H₂O

0

Ammonia NH₃

N = H

Formaldehyde H₂CO

 $H \subset C = O$

Others of Note: CO Most common after H₂

 $HCN, HC_3N, ... HC_{11}N \rightarrow Carbon chains$

CH₄ (Methane)

PAHs (Polycyclic aromatic hydrocarbons)

3 Lessons

- Complexity (Up to 13 atoms) is extraterrestrial
 May be more complex (Hard to detect)
 Glycine ? 1994 so far, not confirmed
 Polycyclic Aromatic Hydrocarbons (PAHs)
 (Infrared evidence)
- Dominance of Carbon
 Carbon Chemistry not peculiar to Earth
- 3. Formation & Destruction Analogous to early Earth

Protection by dust grains: scatter and absorb ultraviolet

Dust particles

Studies of how they scatter and absorb light (Ultraviolet → Visible → Infrared)

 \Rightarrow Two types, range of sizes up to 10⁻⁶ m

Carbon Silicates

PAHs \rightarrow Graphite Si + O + Mg, Fe, ...

~ Soot

Both Produced by old stars

Formation of Interstellar Molecules

1. H₂

Must lose the potential energy difference before it falls apart ($\sim 10^{-14}$ s)

Collisions: OK in lab, too slow in space

Emit photon: <u>very slow</u> for H_2 (10⁷ s)

$$H + H + catalyst = H_2 + catalyst$$

surface of dust grain

Formation of Interstellar Molecules

2. More complex molecules

Problem is activation energy barrier

T~10 K << Barrier

Use reactions without activation energies

e.g. Molecular ions, like HCO+

Energy + simple mol.

→ Reactive mol.

More complex

Ion - Molecule Reactions

Separation of Ion and Molecule

Molecules on Dust Grains

Infrared observations show this: as molecules Vibrate, absorb infrared

e.g.
$$H_2O$$
 absorbs at 3×10^{-6} m

CH₄ absorbs at
$$8 \times 10^{-6}$$
 m

Molecules on Dust Grains

Icy "mantles" contain H, O, C, N

Further reactions possible → more complex molecules (e.g. Ethanol)

- → Building blocks of life ?
- → Life ??? Hoyle and Wickramasinghe

New stars and planets form in same regions

Implications

- 1. Similar (Carbon-Dominated) Chemistry
- 2. Direct Role in Origin of Life?
- 3. Formation + Destruction analogous to Early Earth

Roles of Dust _____

- 1. Protection from UV
- 2. H_2 Formation
- 3. Freeze-out \rightarrow Mantles of Ice H_2O , NH_3 , CH_4 , CO_2 , HCOOH, ...

Methane

Star Formation

First factor in Drake Equation: The rate of star formation

Estimate of Average Star Formation Rate (R),

$$R_* = \# \text{ of stars in galaxy } = N_*$$

lifetime of galaxy

 t_{gal}

N_{*}: Count them? No
Use Gravity (Newton's Laws)

Sun orbiting center of galaxy at 250 km s⁻¹ (155 miles per second)

update: 269 km s⁻¹ reported in Jan. 2009

Kinetic energy = g_2^1 avitational potential energy

$$\frac{1}{2}M_{\odot} v^{2} = \frac{1}{2} \frac{G M_{g} M_{\odot}}{R_{g}}$$
Distance of Sun from center of galaxy

$$\frac{R_g v^2}{G} = M_g$$

Estimate of Average Star Formation Rate (R)

$$(R_q = 25,000 \text{ ly}) \rightarrow M_q = 1.0 \times 10^{11} \text{ M}_{\odot}$$

Update: 28,000 ly gives 1.4 x 10¹¹ M_☉

Add stars outside Sun's orbit $ightharpoonup M_g \simeq 1.6 \times 10^{11} \, M_\odot$

Update: 2.0 x 10¹¹ M_☉

$$N_* \simeq M_g = 1.6 \times 10^{11} = 4 \times 10^{11} (5 \times 10^{11})$$
Avg. mass of star 0.4

 $t_{gal} \simeq 10^{10} \, yr$ (studies of old stars)

$$R_* \simeq 4 \times 10^{11} \text{ stars} = 40 \text{ stars per year } (5 - 50)$$

Update: 50 stars per year

Complicating factors

50 stars per year is an average over history of Milky Way. Current rate is about 5 stars per year. Probably stars formed more rapidly early in history of Milky Way. Any number between 5 and 50 may be correct for our purposes.

Recent work suggests total mass of Milky Way is 3 trillion solar masses ($3 \times 10^{12} M_{\odot}$). This is mostly dark matter outside the orbit of the Sun.

Star Formation

Current Star Formation

Molecular Clouds

- Composition
 - H₂ (93%), He (6%)
 - Dust and other molecules (~1% by mass)
 - CO next most common after H₂, He
- Temperature about 10 K
- Density (particles per cubic cm)
 - $\sim 100 \text{ cm}^{-3} \text{ to } 10^6 \text{ cm}^{-3}$
 - Air has about 10¹⁹ cm⁻³
 - Water about 3 x 10²² cm⁻³
- Size 1-300 ly
- Mass 1 to 10⁶ M_{sun}

A Small Molecular Cloud

The "Black Cloud" B68 (VLT ANTU + FORS1) © European Southern Observatory +

Current Star Formation

- Occurs in gas with heavy elements
 - Molecules and dust keep gas cool
 - Radiate energy released by collapse
 - Stars of lower mass can form
 - Mass needed for collapse increases with T
- Star formation is ongoing in our Galaxy
 - Massive stars are short-lived
 - Star formation observed in infrared

The Launch of The Spitzer Space Telescope

Spitzer Space Telescope Launched Aug. 2003, expect a 5 yr life.

Visible to Infrared Views

Artist's Conception

Features:
Dusty envelope
Rotation
Disk
Bipolar outflow

R. Hurt, SSC

The Protostar

- Evolution of the collapsing gas cloud
 - At first, collapsing gas stays cool
 - Dust, gas emit photons, remove energy
 - At n $\sim 10^{11}$ cm⁻³, photons trapped
 - Gas heats up, dust destroyed, pressure rises
 - Core stops collapsing
 - The outer parts still falling in, adding mass
 - Core shrinks slowly, heats up
 - Fusion begins at $T \sim 10^7 \text{ K}$
 - Protostar becomes a main-sequence star

The Disk

The Star (AU Mic) is blocked in a coronograph.
Allows you to see disk. Dust in disk is heated by star and emits in infrared.

Angular Momentum

- Measure of tendency to rotate
 - -J=mvr
- Angular momentum is conserved
 - J = constant
 - As gas contracts (r smaller), v increases
 - Faster rotation resists collapse
 - Gas settles into rotating disk
 - Protostar adds mass through the disk

The Wind

- Accretion from disk will spin up the star
 - Star would break apart if spins too fast
- Angular momentum must be carried off
- The star-disk interaction creates a wind
- The wind carries mass to large distances
 - J = mvr, small amount of m at very large r
 - Allows star to avoid rotating too fast
- Wind turns into bipolar jet
 - Sweeps out cavity

The Bipolar Jet

Studying the Disk

Ices in a Protoplanetary Disc

Spitzer Space Telescope • IRS ESO • VLT-ISAAC ssc2004-20c