Extraterrestrial Life

Extraterrestrial Life

Extraterrestrial implies the Universe
But we only KNOW about life on Earth (will use as "model")
Danger of "Earth Chauvinism"

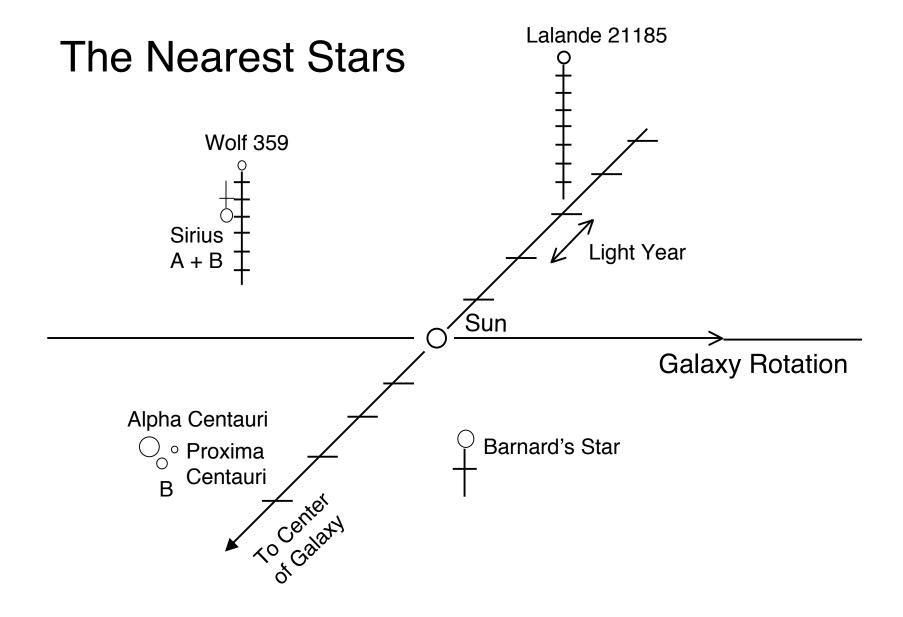
Objectives:

Scientific Perspective
Understand connection between Universe and Life
Give you tools to make your **own** judgments

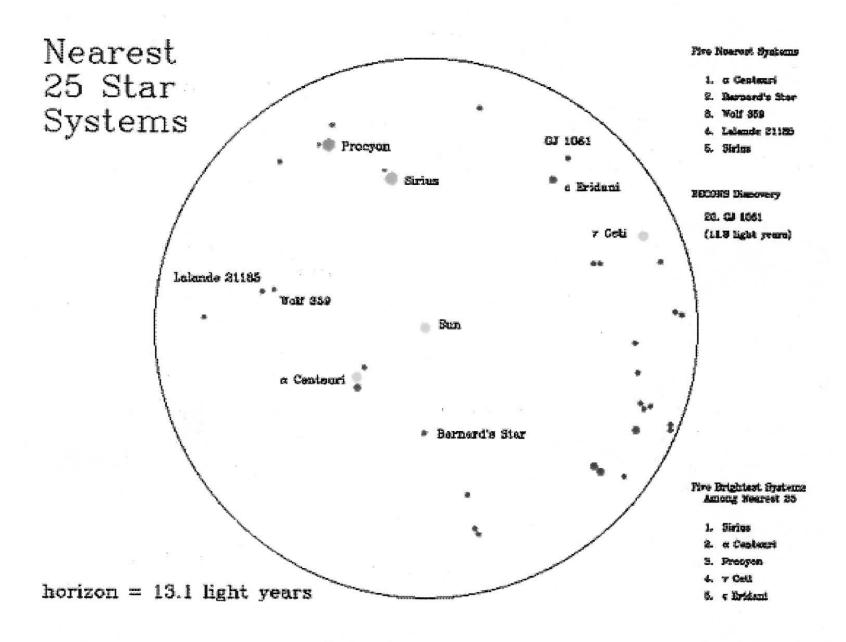
Controversial Issues:

Evolution
Visits by Aliens (UFO's)

Themes:

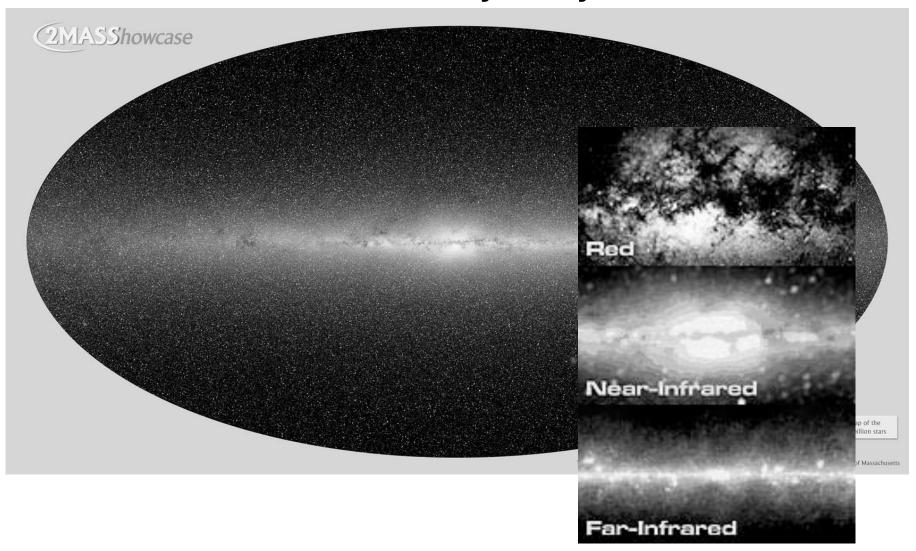

Cosmic Evolution
The Drake Equation
Contact

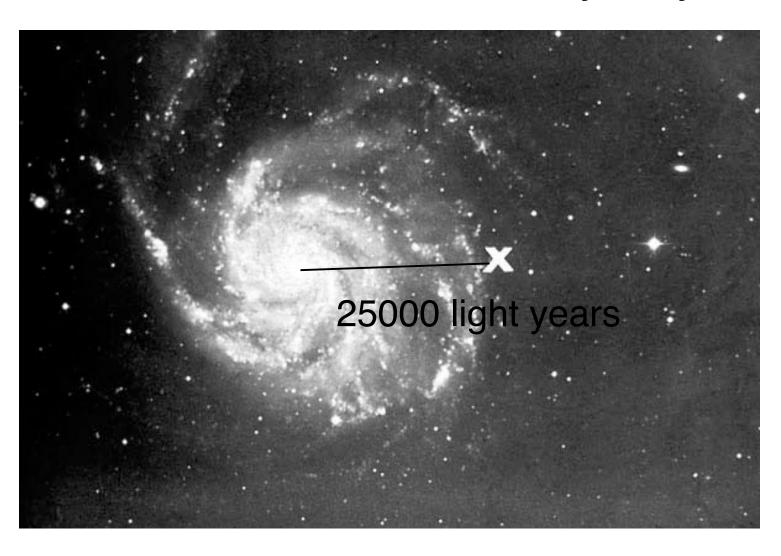
The Cosmic Context


THE NEAREST STARS

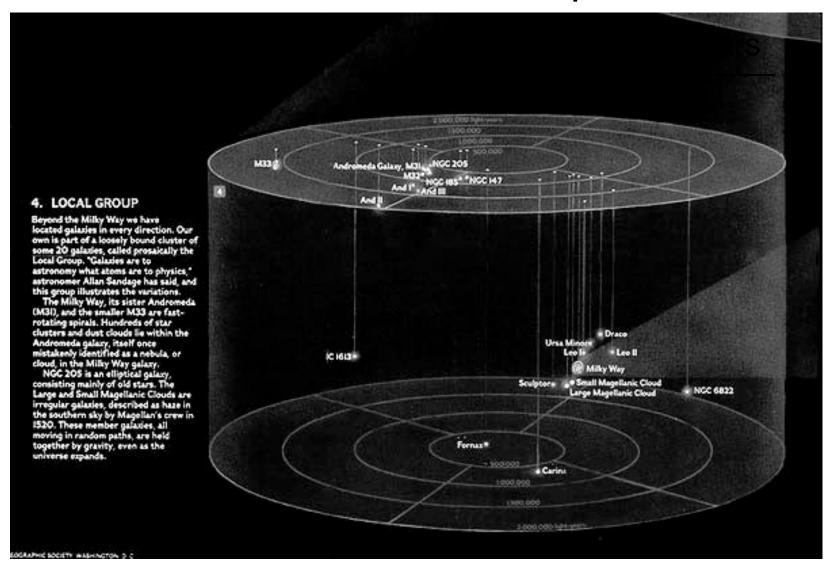
Star	Color	Distance	Closest Approach	Minimum Distance
Sun	Yellow	0.0		
Alpha Centauri A	Yellow	4.3	29,000 A.D.	3.2
Alpha Centauri B	Orange	4.3	29,000 A.D.	3.2
Proxima Centauri	Red	4.2	28,000 A.D.	3.2
Barnard's Star	Red	5.9	12,000 A.D.	3.8
Wolf 359	Red	7.8	13,000 B.C.	7.3
Lalande 21185	Red	8.2	22,000 A.D.	4.6
Sirius A	White	8.6	64,000 A.D.	7.7
Sirius B	White	8.6	64,000 A.D.	7.7

Note: Distances are in light-years with reference to the sun.


25 Nearest Star Systems


Larger Structures

- Milky Way Galaxy 100,000 (10⁵) ly across
- Local Group about 3 million (3 x 10⁶) ly
- Virgo Cluster about 30 million (3 x 10⁷) ly
- Most distant galaxies we can see are about 13 billion (13 x 10⁹) ly away

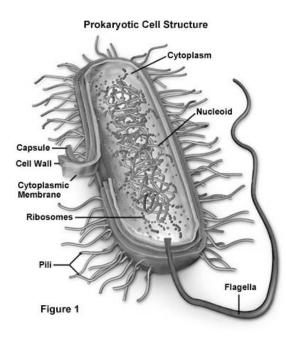

The Milky Way

Our Location in the Milky Way

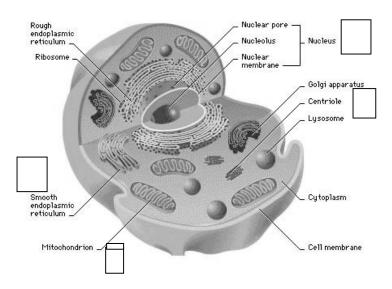

The Local Group

Central Part of Virgo Cluster

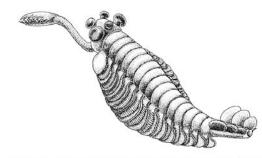
The Hubble Deep Field


Try this Link

http://www.atlasoftheuniverse.com/index.html


Questions

- How far from Earth are the astronauts in the Space Station?
- How far have humans traveled (in light-time units)?
- What fraction of the distance to the nearest star is that?
- Are we likely to travel to another star in your lifetimes?


Life

3.21. Opabinia, showing the frontal nozzle with terminal claw, five eyes on the head, body sections with gills on top, and the tail piece in three segments. Drawn by Marianne Collins.

Five Attributes of Life

- 1. Composed of **Organic Molecules** (Carbon Based)
- 2. Engages in Metabolism
- 3. Reproduces
- 4. Mutates (Evolves)
- 5. Changes in Response to Environment (**Sensitivity**)

Questions

- Can you think of a counter-example to each of these?
- Something alive without these attributes?
- Something not alive with these attributes?

Alternative Approach to Definition of Life Based on Ecological aspect
Clare Folsom (Onsager-Morowitz)

"Life is that property of Matter that results in the Coupled Cycling of bioelements in Aqueous Solution, ultimately driven by radiant energy to attain Maximum Complexity"

Very general - but what does it mean?

Gaia - Geochemical & Biological Cycles Life on Earth as "Organism" (James Lovelock)

Requirements for Life

To Make a: You Need:

Virus < 17 Elements

Bacteria ~ 17

Human (Mammal) ~ 27

Phosphorus (P) and Potassium (K) in shortest supply

Average Human Being contains 6×10^{27} atoms

- ⇒ At least one atom of every stable element and some unstable (radioactive) elements (¹⁴C, ³H, ⁴⁰K)
- ⇒ Some atoms from every species that ever existed

Leaving aside rare elements, all life has similar composition: (All % by number of atoms)

<u>Symbol</u>	<u>Element</u>	<u>Bacteria</u>	<u>Human Beings</u>
Н	Hydrogen	63%	61%
0	Oxygen	29%	26%
С	Carbon	6.4%	10.5%
N	Nitrogen	1.4%	2.4%
Р	Phosphorus	0.12%	0.13%
Ca	Calcium		0.23%
S	Sulfur	0.06%	0.13%
HCON P,S Ca	Essential, most of Also essential Bones	common	

Also Fe (Iron) Hemoglobin
Mg (Magnesium) Chlorophyll

Composition of the Earth:

Element	Crust	Ocean	Atmosphere
Oxygen	47%	~ 33%	21%
Silicon	28%		
Nitrogen			78%
Hydrogen		~67%	(0.011% Carbon)

Question: Which is most similar to that of life?

Composition of life **more** like Composition of Sun (Universe)

Symbol	Element	% in Sun	
Н	Hydrogen	93%	
He	Helium	6.4%	
O	Oxygen	0.06%	
С	Carbon	0.03%	
N	Nitrogen	0.011%	

Aside from He, HOCN

Where did these elements come from?

Appendix 5

Drake Equation:

$$N = R_* f_p n_e f_\ell f_i f_c L$$

N = number of communicable civilizations in our galaxy

R_{*} = rate at which stars form

f_D = fraction of stars which have planetary systems

ne = number of planets, per planetary system, which are suitable for life

 f_{ℓ} = fraction of planets suitable for life on which life actually arises

f_i = fraction of life-bearing planets where intelligence develops

f_c = fraction of planets with intelligent life which develop a technological phase during which there is

capability for and interest in interstellar communication

L = average lifetime of communicable civilizations

r = average distance to nearest civilization

	R _*	fp	ne	f_{ℓ}	fi	f _c	L	N	r
Estimate									
Birthrate									

if N > 8000
$$r = \frac{10^4 \text{ l.y.}}{\text{N}^{1/3}}$$

if N < 8000
$$r = \frac{5 \times 10^4 \text{ l.y}}{\text{N}^{1/2}}$$

The Drake Equation

Drake Equation:

$$N = R * f_p n_e f_\ell f_i f_c L$$

Ν number of communicable civilizations in our galaxy =R_{*} Rate at which stars form = f_p Fraction of stars which have planetary systems =Number of planets, per planetary system, n_{e} =which are suitable for life f_ℓ Fraction of planets suitable for life on which life actually arises = f_i Fraction of life bearing planets where intelligence develops = f_c Fraction of planets with intelligent life which develop a = technological phase during which there is a capacity for and interest in interstellar communication Average of lifetime of communicable civilizations =

Average distance to nearest civilization

=