Evaluating your Drake Equation

Basic Ideas

- Number of Civilizations in our Galaxy
 - Product of rate of emergence and L
 - Running product gives rate for each step
 - Until L, we have rates
 - Through f_c, we get "communicable" civilizations
 - Multiplying by L gives the number (N)
 - Assumes "steady state" between birth and death of civilizations

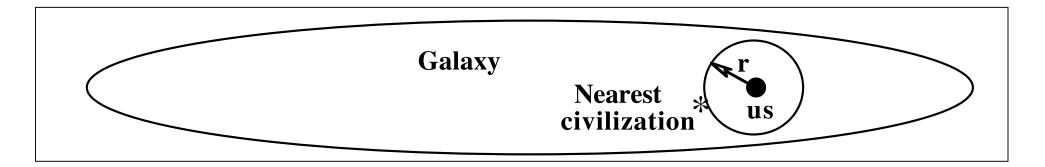
Drake Equation:

$N = R \star f_p n_e f_\ell f_i f_c L$

- N = number of communicable civilizations in our galaxy
- R = Rate at which stars form

 f_{ℓ}

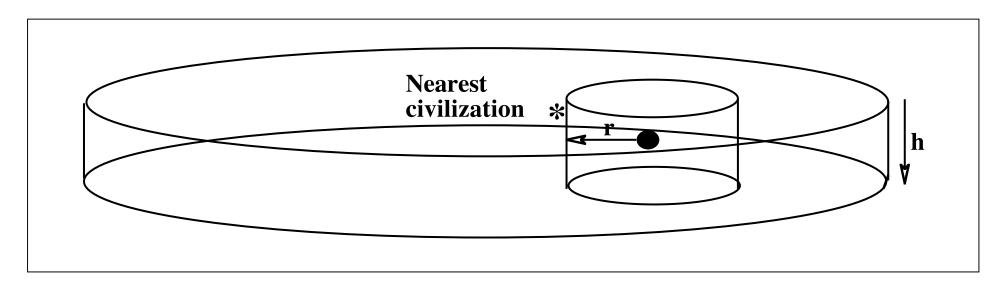
f_i


f_c

r

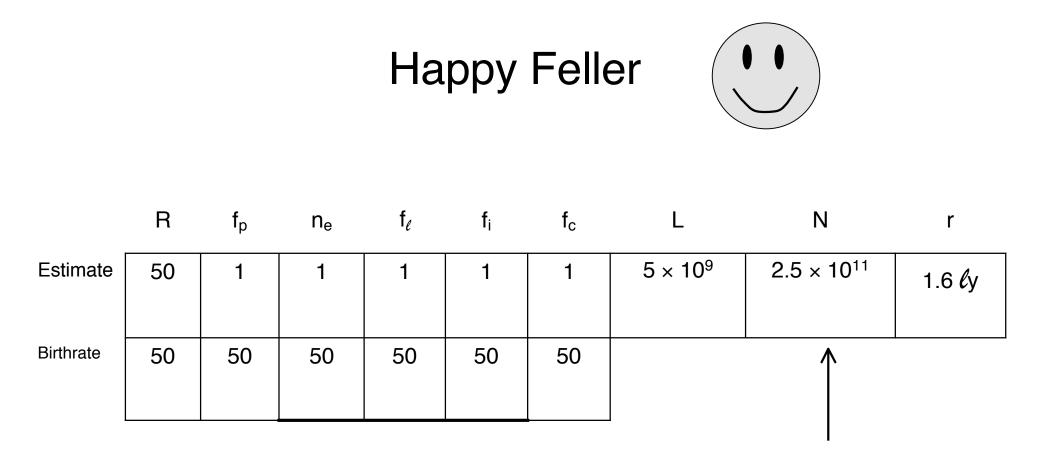
- f_p = Fraction of stars which have planetary systems
- n_e = Number of planets, per planetary system, which are suitable for life
 - = Fraction of suitable planets where life arises
 - = Fraction of life bearing planets where intelligence develops
 - Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication
 - = Average of lifetime of communicable civilizations
 - = Average distance to nearest civilization

Distance to Nearest Neighbor


1. Assume civilizations spread uniformly but randomly through galaxy

r = radius of imaginary sphere centered on us that touches nearest civilizaztion search vol $\propto r^3$

$$\Rightarrow r = \frac{10^4 \, \ell y}{N^{1/3}}$$


Distance to Nearest Neighbor

If N < 8000, r from previous formula is 500 ℓ y About equal to thickness of Galaxy

Use cylinder for search vol $\propto r^2 h$

so
$$r = 5 \times 10^4 \ell y$$

N^{1/2}

2.5 out of 4 stars

If N > 8000, $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N <8000, $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$

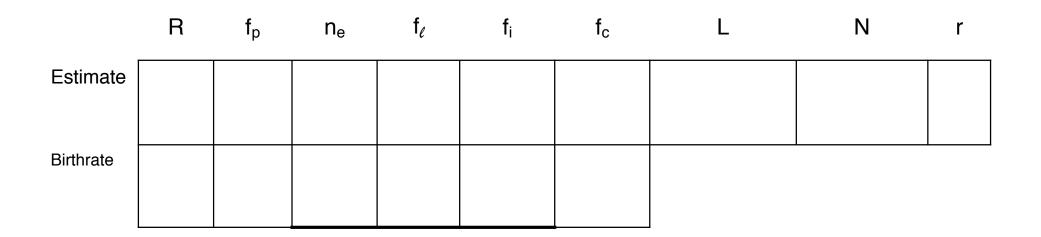


	R	f _p	n _e	f_ℓ	f _i	f _c	L	Ν	r
Estimate	5	0.1	0.1	0.01	0.01	0.01	100	5 × 10 ⁻⁶	
Birthrate	5	0.5	0.05	5 x 10 ⁻⁴	5 × 10 ⁻⁶	5 × 10 ⁻⁸			

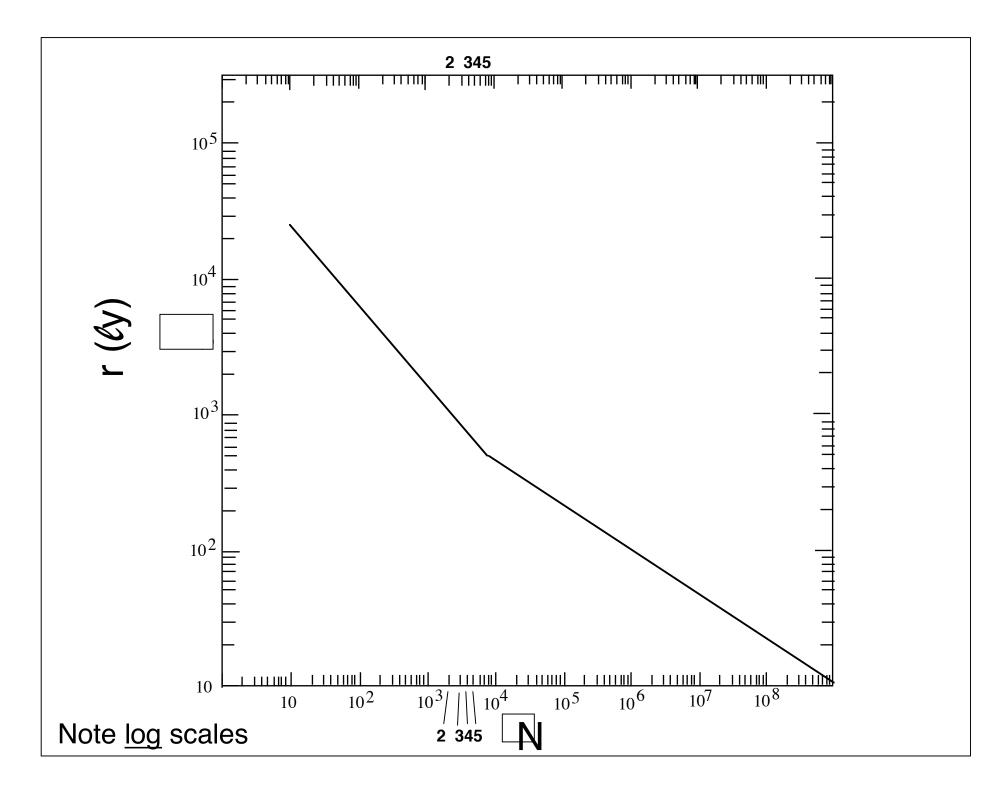
Never two civilizations at same time

If N > 8000, $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N < 8000, $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$

Mr. Average Guy



	R	f_p	n _e	f_ℓ	f _i	f _c	L	Ν	r
Estimate	10	0.5	0.89	0.5	0.7	0.6	1 × 10 ⁶	9.4 × 10 ⁵	100
Birthrate	10	5	4.45	2.23	1.56	0.94		 ↑	
			4	1 out of 4×10^5 stars					
If N > 8000,			$r = \frac{10^4 \text{ light years}}{N^{1/3}}$				√ → 1	0 × 10 ⁵ :	= 10 ⁶
If N < 8000,			$r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$				rS		


Evaluating YOUR Drake Equation

- Almost no answers are wrong
 - It must be possible for us to exist
 - N must be no greater than the number of stars in the Galaxy
 - May imply limit on L
- Ways to evaluate:
 - Plug into equations
 - Use calculator on web
 - <u>http://www.as.utexas.edu/astronomy/education/drake/dra</u>
 <u>ke.html</u>
 - Ask us for help

Your Drake Equation

If N > 8000, $r = \frac{10^4 \text{ light years}}{N^{1/3}}$ If N < 8000, $r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$

Points to bear in mind

- r is based on assuming spread uniformly
 Could be less if closer to center of MW
- r is based on averages
 - Could be closer but unlikely
- r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If L < 2r, no two way messages