Evaluating your Drake Equation

Basic Ideas

- Number of Civilizations in our Galaxy
 - Product of rate of emergence and L
 - Running product gives rate for each step
 - Until L, we have rates
 - Through f_c, we get "communicable" civilizations
 - Multiplying by L gives the number (N)
 - Assumes "steady state" between birth and death of civilizations

Drake Equation:

$$N = R * f_p n_e f_\ell f_i f_c L$$

N = number of communicable civilizations in our galaxy

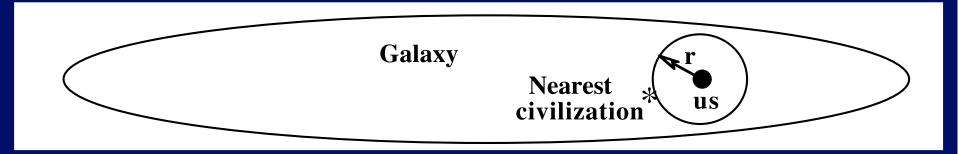
R = Rate at which stars form

f_p = Fraction of stars which have planetary systems

n_e = Number of planets, per planetary system, which are suitable for life

 f_{ℓ} = Fraction of suitable planets where life arises

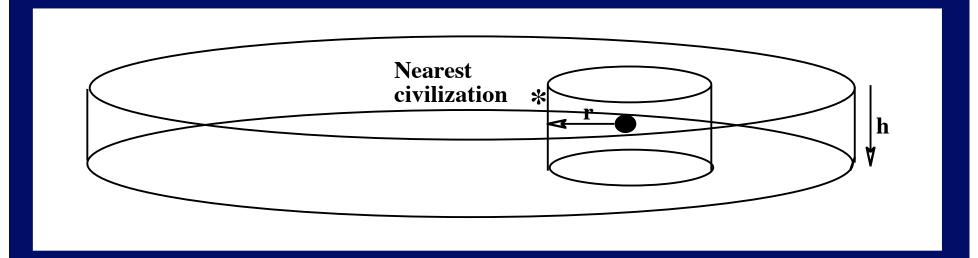
f_i = Fraction of life bearing planets where intelligence develops


f_c = Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication

L = Average of lifetime of communicable civilizations

r = Average distance to nearest civilization

Distance to Nearest Neighbor


1. Assume civilizations spread uniformly but randomly through galaxy

r = radius of imaginary sphere centered on us that touches nearest civilizaztion search vol $\propto r^3$

$$\Rightarrow r = \frac{10^4 \, \ell y}{N^{1/3}}$$

Distance to Nearest Neighbor

If N < 8000, r from previous formula is 500 *by*About equal to thickness of Galaxy

Use cylinder for search vol $\propto r^2 h$

so
$$r = \frac{5 \times 10^4 \, \ell y}{N^{1/2}}$$

Happy Feller

	R	fp	n _e	f_ℓ	fi	f _c	L	N	r
Estimate	50	1	1	1	1	1	5 × 10 ⁹	2.5 × 10 ¹¹	1.6 <i>l</i> y
Birthrate	50	50	50	50	50	50			

2.5 out of 4 stars

If N > 8000,
$$r = \frac{10^4 \text{ light years}}{N^{1/3}}$$
 If N <8000,
$$r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$$

Angela Angst

	R	f_p	n _e	f_ℓ	fi	f _c	L	N	r
Estimate	5	0.1	0.1	0.01	0.01	0.01	100	5 × 10 ⁻⁶	
Birthrate	5	0.5	0.05	5 x 10 ⁻⁴	5 × 10 ⁻⁶	5 × 10 ⁻⁸			

Never two civilizations at same time

If N > 8000,
$$r = \frac{10^4 \text{ light years}}{N^{1/3}}$$

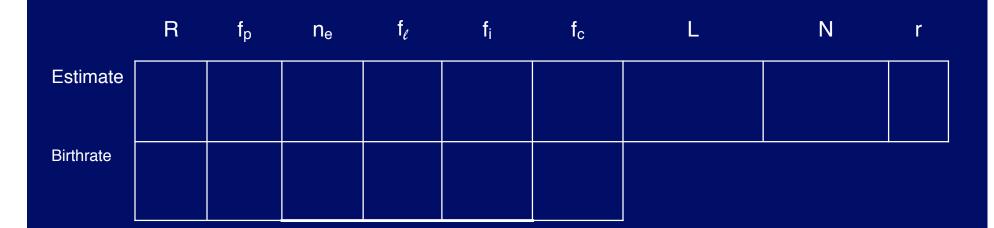
If N < 8000,
$$r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$$

Mr. Average Guy

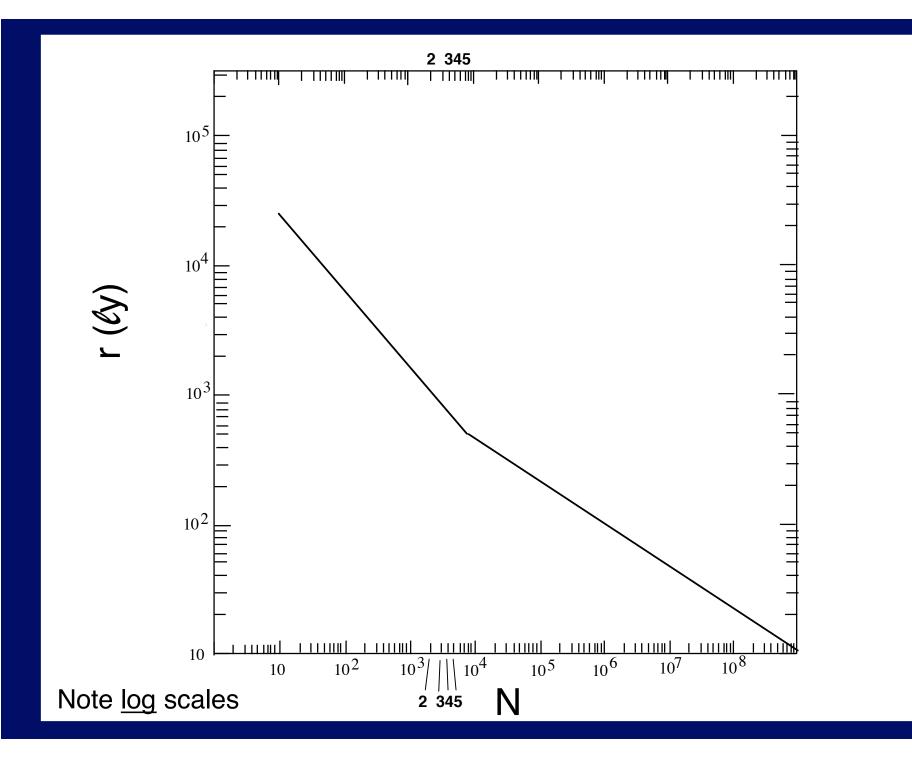
 4×10^5 stars

 $\rightarrow 10 \times 10^5 = 10^6$

	R	f_p	n _e	f_ℓ	fi	f _c	L	N	r
Estimate	10	0.5	0.89	0.5	0.7	0.6	1 × 10 ⁶	9.4 × 10 ⁵	100
Birthrate	10	5	4.45	2.23	1.56	0.94	1 out of		


If N > 8000,
$$r = \frac{10^4 \text{ light years}}{N^{1/3}}$$

If N < 8000,
$$r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$$


Evaluating YOUR Drake Equation

- Almost no answers are wrong
 - It must be possible for us to exist
 - N must be no greater than the number of stars in the Galaxy
 - May imply limit on L
- Ways to evaluate:
 - Plug into equations
 - Use calculator on web
 - http://www.as.utexas.edu/astronomy/education/drake/drake.html
 - Ask us for help

Your Drake Equation

If N > 8000,
$$r = \frac{10^4 \text{ light years}}{N^{1/3}}$$
 If N < 8000,
$$r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$$

Points to bear in mind

- r is based on assuming spread uniformly
 - Could be less if closer to center of MW
- r is based on averages
 - Could be closer but unlikely
- r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If L < 2r, no two way messages