Future of Life in the Solar System

Future of Life in Solar System Terraform other planets (Mars most likely)

Space Colonies

Solar Power from space

Dyson spheres

Robots

Von Neumann Devices

Terraforming Planets

Seed other planets with "bio-engineered organisms"

These make the planet more habitable for humans

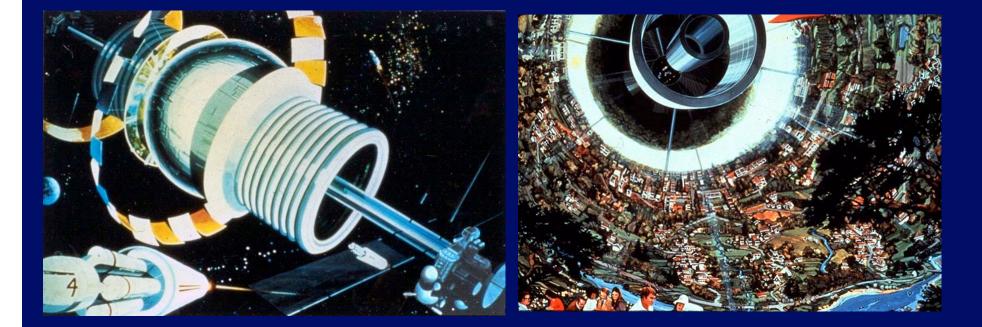
To terraform (need H₂O, O₂, O₃) e.g., Melt polar caps on Mars (10¹⁴ tons of ice) 2500 to 10000 years to build up atm. pressure, get liquid water

Terraformed Mars

Ocean in northern lowlands covers 25% of planet

Living in Space to Robots...

Space colonies Solar Power satellites

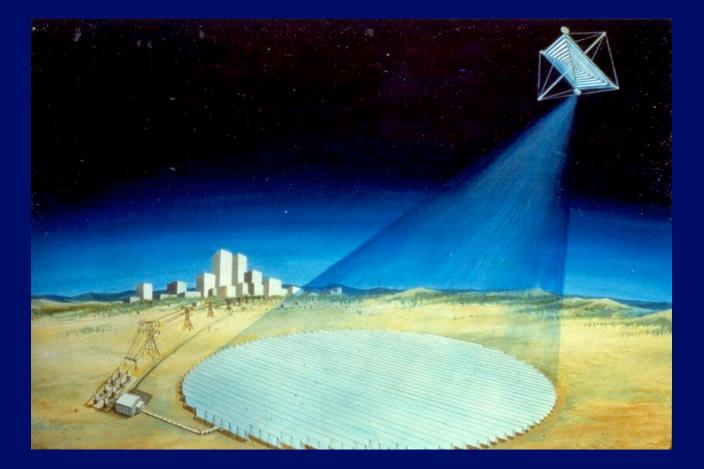

Dyson sphere

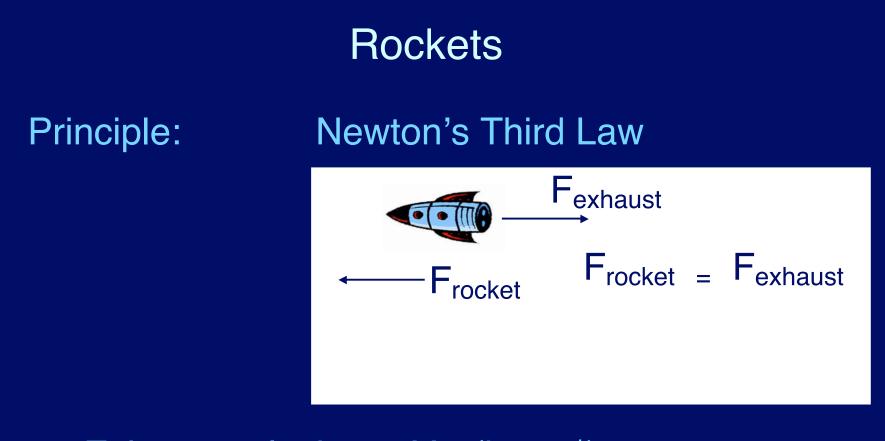
(Type II Civilization)

Role of Robots

Von Neumann device

Space Colony (Island One)




Solar Power Satellites

SPACE SOLAR POWER SOLAR ENERGY COLLECTOR AND CONVERTER SOLAR ENERGY INEXHAUSTIBLE - CLEAN EXPORTABLE MICROWAVE BEAMS SPACE POWER STATION-150 KM **GROUND RECEIVERS-100 KM² EACH** POWER OUTPUT-10 MILLION KILOWATTS

MICROWAVE COLLECTORS AND POWER DISTRIBUTION

Solar Power Satellite

1. Exhaust velocity $V_e \ (\text{km s}^{-1})$ $V_e \ \propto \sqrt{\frac{T}{M}}$

Recall Newton's second law: F = (dp/dt) = m (dv/dt) = m a, if m constant If v constant, but m is not, F = (dm/dt) v

- 2. Thrust (Force) $F = (dM/dt) V_e$ (Newtons, Pounds) dM/dt = rate at which mass is ejected
- 3. Mass ratio
 - $R_M = Total Mass at Takeoff$ Mass After Fuel Used Up

High mass ratios mean you need a lot of fuel to get a certain payload accelerated to a certain speed

4. Specific impulse

(s.i.)

Thrust(NeRate of Fuel UsePo

(Newtons/kg/sec, Pounds/Pounds/sec = "sec")

A measure of efficiency. Highest possible s.i. with chemical fuels is < 500

To escape gravity $v > v_{esc} = 11.2$ km s⁻¹ (7 miles/sec)

This is very difficult for the gravity of the Earth So we use Multi-stage Rockets

Current situation

Space Shuttle: Mass = 2×10^6 kg

 $\begin{array}{ll} F_{thrust} &= 29 \times 10^6 & \text{Newtons} \\ R_M &= 68 \text{ for actual payload} \\ \text{s.i.} &= 455 \text{ sec.} & \sim \text{best possible with} \\ & \text{chemical fuel} \end{array}$

For more adventurous exploitation of Solar System Probably want Nuclear Propulsion Fission could give s.i. = 1.5×10^6 sec (in principle, more likely to get 20,000 sec)

Current Initiative

- Human mission to Mars
- Several attempts to get started in past
- Exploration Vision in 2004
 - First return to Moon
 - Then Mars
 - Long-term program needed
 - http://www.nasa.gov/missions/solarsystem/explore_main.html