Origin of the Solar System

Current Properties of the Solar System

Look for General Properties
Dynamical Regularities
Orbits in plane, nearly circular
Orbit sun in same direction (CCW from North pole)
Rotation Axes perpendicular to orbit plane
(Sun \& most planets; Uranus exception)
Planets contain 98\% of angular momentum
Spacing and Composition
Spacing increases with distance
(roughly logarithmic)
Composition varies with distance
inner 4: rocky, small, thin atmospheres
outer 4: gaseous, large, mostly atmosphere

Sun contains 99.9% of mass

$$
\frac{d_{2}}{d_{1}} \simeq 1.5-2
$$

Heliocentric Charts by Richard Binzel

The Solar System

Rocky - iron, silicates, ...
"Icy" - at time of formation $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}, \ldots\right)$
Gaseous - H, He

What is a Planet? I. Small end...

- Pluto much smaller than others ($0.002 \mathrm{M}_{\text {earth }}$)
- Other, similar objects found in Kuiper Belt
- Including one larger than Pluto (Xena)
- IAU voted in 2006
- 1. Create a new category of dwarf planet
- 2. Demote Pluto to a dwarf planet

Theory of Solar System Formation

All start with rotating disk
Minimum mass: 0.01 M \odot

Sum of planets $\sim 0.001 \mathrm{M}_{\odot}$ but most of H_{2}, He lost

Note: Similar to typical masses of disks around forming stars

Some models assume more massive disks

Temperature, Density decrease with distance from forming star
(Observations suggest slower decrease than models usually assume)

DUST PLAYS A KEY ROLE

Dust cores and Icy Mantles $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}\right)$

Outer Planets

David W. Hughes

Fig.2.13. In the spinning preplanetary solar nebula the dust retreats to the equatorial plane due to the energy losses that occur in the collision process illustrated in Figure 2.12 (from Boris Levin, The Origin of the Earth and the Planets, Foreign Languages Publishing House, Moscow, 1956).

Artist's conception of dust in disk

Accretion of Dust Grains

Fig. From talk by Jurgen Blum

Core Accretion Model

Dust sinks to midplane

$$
\stackrel{\Delta}{\Delta} 0
$$

$10^{6-\frac{10^{8}}{\} \mathrm{yr}}$ Collisions between planetesimals builds rocky planet cores
Gas Processes (Outer Planets)
Accretion of gas/gravitational collapse onto rocky cores

Leads to H, He in atmosphere
Rings, moons (minature solar system)

Dust and Ice

Interstellar dust - core + mantle

$\xrightarrow{?}$ Planet types
Inner: Only rocky cores, little or no ice survives \longrightarrow rocky planets
Outer: Ice survives \longrightarrow comets, icy moons of outer planets

Outgassing

Planet heats internally, so ice turns to gas (atmosphere)
Uranus and Neptune (thick atmospheres, formerly icy materials)
If pressure, T suitable, may form liquid and get ocean (Earth)

Formation of Gas Giants (Jupiter, Saturn)

Models for formation of gas giants

General Expectations about Planetary Systems

1. Planet formation in a rotating disk with icy dust can explain most of the general facts about our solar system
2. Planetary systems are likely to be common since disks with $M \gtrsim M_{\text {min }}$ are common around forming stars.

If we are typical,
3. Expect other planetary systems will have ~ 10 planets, logarithmic spacing, different planet types

Theory Predicts Forming Planets Clear a Gap

Can we observe such gaps?

Possible Evidence for Planet Formation

SMM image of Vega shows dust peaks off center from star (*). Fits a model with a Neptune like planet clearing a gap. Can test by looking for motion of clumps in debris disk.

SMM image of Vega
JACH, Holland et al.

Issues for Planet Formation

- The time to build up the giant planets from dust particles is long in theories
- Gas has to last that long to make gas giants
- How long do dust disks last?
- How long does the gas last?
- Are there faster ways to make planets?
- What about planet building for binary stars?

Time Available to form planets

- The disks around young stars can form planets
- How long do the disks last?
- Sets limit on time to form planets
- Most gone by 3 to 5 Myr
- Little evidence that gas stays longer
- Some "debris" around older stars
- May be evidence of planet building

Disks versus Age of Star Evidence for Collisions

Formation of Gas Giants (Jupiter, Saturn)

Models for formation of gas giants

Binary Stars

- About $2 / 3$ of all stars are in binaries
- Most common separation is 10-100 AU
- Can binary stars have disks?
- Yes, but binary tends to clear a gap
- Disks well inside binary orbit
- Or well outside binary orbit

Brown Dwarfs

- Stars range from 0.07 to $\sim 100 \mathrm{M}_{\text {sun }}$
- Jupiter is about $0.001 \mathrm{M}_{\text {sun }}$
- Brown dwarfs between stars and planets
- Dividing line is somewhat arbitrary
- Usual choice is $13 \mathrm{M}_{\text {jupiter }}$
- Brown dwarfs rarely seen as companions to stars
- But "free-floaters" as common as stars
- Many young BDs have disks
- Planets around BDs?

What is a Planet? II. High end...

- Brown dwarfs now found to very low masses
- Some clearly less than $13 \mathrm{M}_{\text {jupiter }}$
- Can't even fuse deuterium
- Some people call these planets
- Some less massive than known planets
- Usual definition: planets orbit stars
- Some brown dwarfs may have "planets"
- Nature does not respect our human desire for neat categories!

Other Active Issues

- Other planetary systems are quite different
- Big planets in close
- But this is probably due to selection effect
- Locations may differ with mass of star
- Ices survive closer to lower mass star
- May get ice giants in close
- Also planets may migrate inwards
- May prevent formation of terrestrial planets

Formation of Earth

Solid particles \Rightarrow silicate + iron
No gas collected \Rightarrow atmosphere outgassed
Radioactive heating \Rightarrow molten core
\longrightarrow ice \longrightarrow gas
$\mathrm{H}_{2} \mathrm{O} \longrightarrow$ gas \longrightarrow liquid (oceans)
$\mathrm{CO}_{2} \longrightarrow$ dissolve in oceans \longrightarrow carbonate rocks
$\mathrm{N}_{2} \longrightarrow$ gas

Early Earth Atmosphere

$\mathrm{N}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$	$\left(\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2}\right.$? $)$
Reducing $\quad\left(\right.$ No free $\left.\mathrm{O}_{2}\right)$	Neutral ?
Energy Sources	

Differentiation of the Earth

Impact heating by planetesimals (release of gravitational potential energy)

Radioactive nuclei decay (release of nuclear potential energy)

Result: molten Earth
Iron-Nickel \longrightarrow center (core)
Silicates float \longrightarrow upper levels (mantle)
Differentiation released Grav. Potential energy \longrightarrow hot core
Radioactive heating continues

Results in layered Earth (like a soft-boiled egg)

Egg

White $\begin{cases}3 . & \text { Lower mantle - iron rich silicates, solid } \\ 4 . & \text { Asthenosphere (upper mantle) pliable }\end{cases}$
Shell 5. Lithosphere - rigid silicates (crust)
Lithosphere can "float" on asthenosphere
\longrightarrow Continental Drift, Earthquakes, Volcanos

Continental Drift Reconstructed

150 My Reconstruction
Shows motion of continental plates over last 150 Myr.
Red and green dots show locations of ocean drilling.
http://www.odsn.de/odsn/index.html

Formation of Earth and Moon

$$
\frac{\mathrm{M}_{\text {Moon }}}{\mathrm{M}_{\text {Earth }}} \quad \text { Larger than all other planets }
$$

Most terrestrial planets have no moons
(Martian moons are captured asteroids)
Moon most likely resulted from giant impact

$$
0.15 \mathrm{M}_{\oplus}
$$

Earth gets more iron

$$
\rho_{\oplus}=5.5 \mathrm{~g} \mathrm{~cm}^{-3}
$$

Moon mostly silicate

$$
\rho_{\text {Moon }}=3.3 \mathrm{~g} \mathrm{~cm}^{-3}
$$

Temperature was very high after impact (10,000-60,000 K)
Any icy material left?

Origin of Atmosphere

Certain "Noble" gases (e.g. Neon) are more rare in Earth atmosphere than in solar nebula. $\quad \Rightarrow$ Atmosphere not collected from gas

Reason: Earth is small \Rightarrow gravity is weak
Temperature in solar nebula is high - atoms moving fast, harder to hold Outgassing: "Icy" material vaporized by high temperatures
\longrightarrow vents, volcanos
Ultraviolet Light

No O_{2} on early Earth; No ozone $\left(\mathrm{O}_{3}\right)$, so no protection from ultraviolet light $\overline{\text { Alternative: Icy materials brought by comets. }}$

