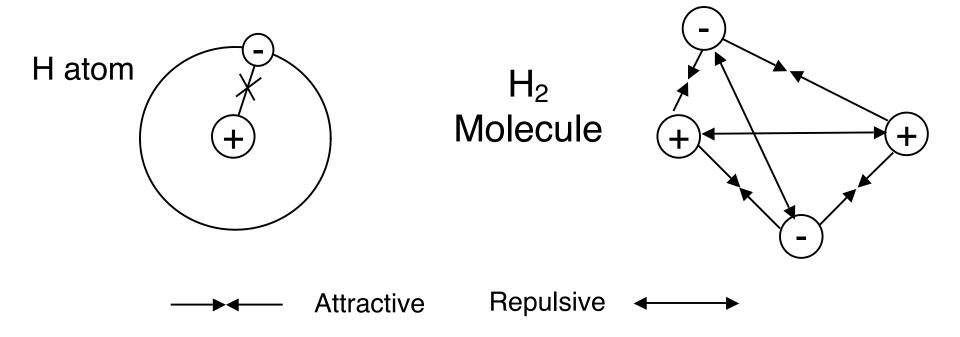
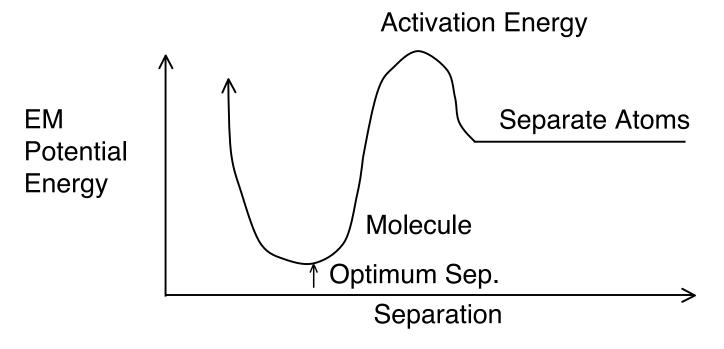

Cosmic Evolution, Part II Heavy Elements to Molecules


Heavy elements → molecules

First a review of terminology:

e.g. C⁺² Carbon nucleus + 4 (6-2) electrons

Forces



Molecule: Repulsive ~ Attractive

More delicate than atoms, can be <u>much</u> more complex

"Bond" is sharing of electrons Is molecule stable?

Yes, if EM potential energy less than separate atoms

Activation energy lower → T ~ 100 - 1000 K (Room Temperature)

Questions

- Why is room temperature around 300 K?
- How commonly is this temperature found in the Universe?

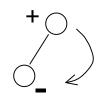
Conventions:

$$H_2$$
 H_-H CO_2 $O = C = O$

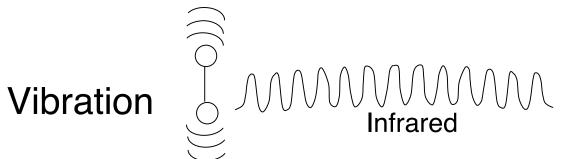
Bond Double Bonds

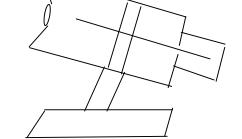
Carbon very versatile

→ Complex chemistry


Interstellar Molecules

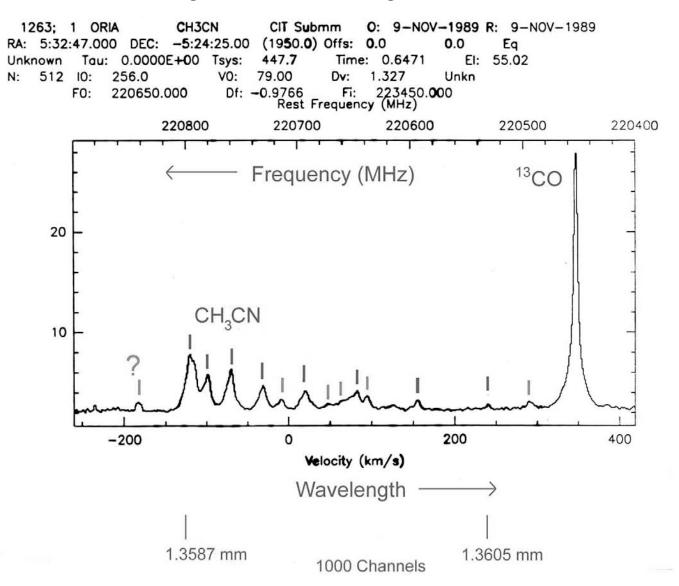
Exist as gas (individual molecules)


A few known in 1930's


Many more since 1968 - Radio astronomy

Rotation ,

Radio Telescope



Optical Telescope

How we detect Interstellar Molecules

Radio Spectroscopy (Mostly $\lambda \sim 1$ - 3 mm)

+ Precise knowledge of wavelengths for different molecules

Appendix 2
Interstellar Molecules

Species	Name	Species	Name
H ₂	molecular hydrogen	CO ₂	carbon dioxide
C ₂	diatomic carbon	ocs	carbonyl sulfide
CH	methylidyne	SO ₂	sulfur dioxide
CH+	methylidyne ion	SiC ₂	silicon dicarbide*
CN	cyanogen	SiCN	
co	carbon monoxide	AICN	
CO+	carbon monoxide ion	C ₂ S	
CS	carbon monosulfide	C ₂ O	dicarbon monoxide †
OH	hydroxyl	C ₃	triatomic carbon*
HCI	hydrogen chloride	MgCN	magnesium cyanide*
NH	-,	MgNC	magnesium isocyanide
NO	nitric oxide		
NS	nitrogen sulfide	NaCN	sodium cyanide*
SiC	silicon carbide®	C-U-	and deep
SiO	silicon monoxide	C ₂ H ₂	acetylene
SiS	silicon sulfide	C ₃ H	propynylidyne (l and c)
SiN	silicon nitride	H ₂ CO	formaldehyde
SO	sulfur monoxide	H ₂ CN	
PN	2	HC2N	T 17 TAX TAX TAX TAX
CP	1/4/27 (Here 1/1987)	NH ₃	agnmonia
SO ⁺	sulfoxide ion	HNCO	isocyanic acid
NaCl	sodium chloride*	HOCO+	
AICI	aluminum chloride*	HCNH+	
KCl	potassium chloride*	HNCS	isothiocyanic acid
AIF	aluminum fluoride*†	C ₃ N	cyanoethynyl
FeO	iron monoxide	C ₃ O	tricarbon monoxide
HF		C ₃ S	and our monorage
SH		H ₂ CS	thioformaldehyde
H ₃ +	protonated hydrogen	H ₃ O ⁺	hydronium ion
C ₂ H	ethynyl	SiC ₃	
CH ₂	methylene †	C.H	but diam'd
HCN	hydrogen cyanide	C ₄ H	butadiynyl
HNC	hydrogen isocyanide	C ₃ H ₂	cyclopropenylidene
HCO	formyl	H ₂ CCC	propadienylidene
HCO+	formyl ion	нсоон	formic acid
HCS+	thioformyl ion	CH ₂ CO	ketene
HOC+	isoformyl ion †	HC ₃ N	cyanoacetylene
N ₂ H ⁺	protonated nitrogen	HNC ₃	
HNO		CH ₂ CN	cyanomethyl
H ₂ O	nitroxyl	NH ₂ CN	cyanamide
	water hudeone culfide	CH ₂ NH	methanimine
H ₂ S	hydrogen sulfide	HC2NC	
H ₂ N	hydrogen nitride	CH ₄	methene

173

Species	Name	Species	Name
H ₂ COH ⁺	protonated formaldehyde	HC ₅ N	cyanodiacetylene
SiH ₄	silane*		
C ₄ Si	•	C ₇ H	
C ₅	pentatomic carbon*	HCOOCH ₃	methyl formate
~,	pennomo varoni	CH ₃ C ₃ N	methylcyanoacetylene
C ₅ H	pentynylidyne	CH ₃ COOH	acetic acid
C ₅ N	P	H ₂ C ₆	
C ₂ H ₄	ethylene*	CH ₂ OHCHO	glycolaldehyde
H ₂ CCCC	butatrienylidene	-	••
CH ₃ OH	methanol	CH ₃ C ₄ H	methyldiacetylene
CH ₃ CN	methyl cyanide	CH ₃ CH ₃ O	dimethyl ether
CH ₃ NC	methyl isocyanide	CH ₃ CH ₂ CN	ethyl cyanide
CH ₃ SH	methyl mercaptan	CH ₃ CH ₂ OH	
NH ₂ CHO	formamide	HC7N	cyanohexatriyne
HC ₃ HO	propynal	C ₈ H	
HC3NH+	1-17-		
negrin		CH ₃ C ₄ CN	†
C ₆ H		CH ₃ CH ₃ CO	acetone
CH ₂ CHCN	vinyl cyanide	NH2CH2CO	
CH ₃ C ₂ H	methylacetylene	CH2OHCH20	OH ethylene glycol
CH ₃ CHO	acetaldehyde		
CH ₃ CHO CH ₃ NH ₂	methylamine	HC ₉ N	cyano-octa-tetra-yne
		2000000	
	view alcohol	HC ₁₁ N	cyano-deca-penta-yne
C ₂ H₄O CH ₂ CHOH	ethylene oxide vinyl alcohol	HC ₁₁ N	cyano-deca-penta-

^{*} Detected in circumstellar envelopes only

† tentative

Look at Appendix 2

 Important Probe of conditions

Molecular lons

- Discovered in Infrared

- Discovered in UV

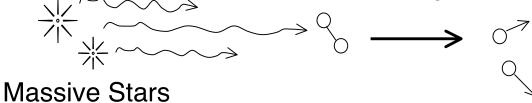
- Relevant to the Origin of Life

Important Examples:

Formaldehyde
$$H_2CO$$

Others of Note: CO Most common after H₂

HCN, HC₃N, ... HC₁₁N \rightarrow Carbon chains


CH₄ (Methane)

PAHs (Polycyclic aromatic hydrocarbons)

3 Lessons

- Complexity (Up to 13 atoms) is extraterrestrial
 May be more complex (Hard to detect)
 Glycine ? 1994
 Polycyclic Aromatic Hydrocarbons (PAHs)
 (Infrared evidence)
- Dominance of Carbon
 Carbon Chemistry not peculiar to Earth
- 3. Formation & Destruction Analogous to early Earth

Destruction: Ultraviolet light breaks bonds

Protection by dust grains: scatter and absorb ultraviolet

Dust

Studies of how they scatter and absorb light (Ultraviolet → Visible → Infrared)

⇒ Two types, range of sizes up to 10⁻⁶ m

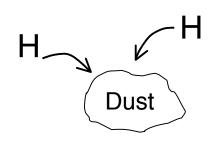
Carbon Silicates

PAHs → Graphite Si + O + Mg, Fe, ...

~ Soot

Both Produced by old stars

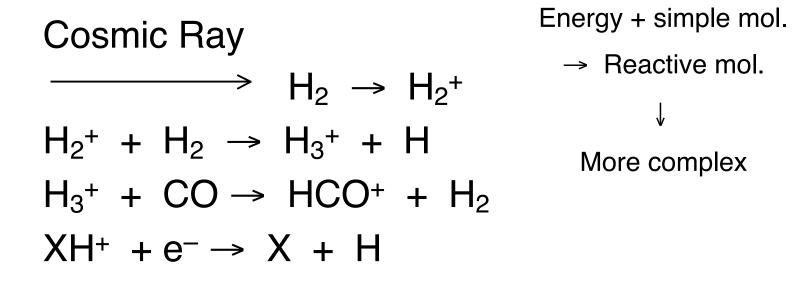
Formation of Interstellar Molecules

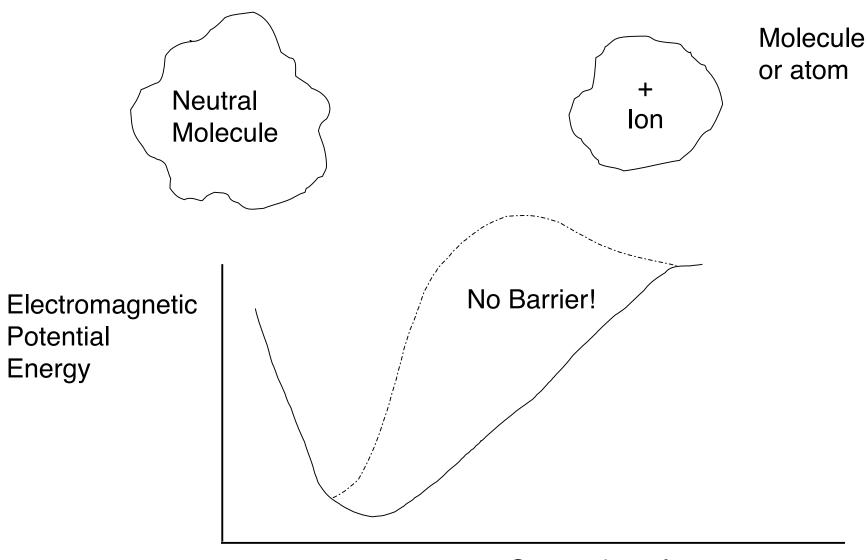

 H_2

Must lose the potential energy difference before it falls apart ($\sim 10^{-14}$ s)

Collisions: OK in lab, too slow in space

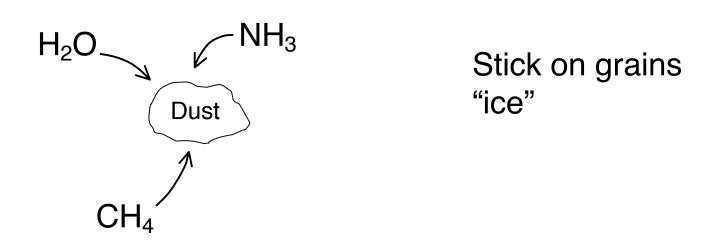
Emit photon: <u>very</u> slow for H_2 (10⁷ s) H + H + catalyst = H_2 + catalyst


surface of dust grain



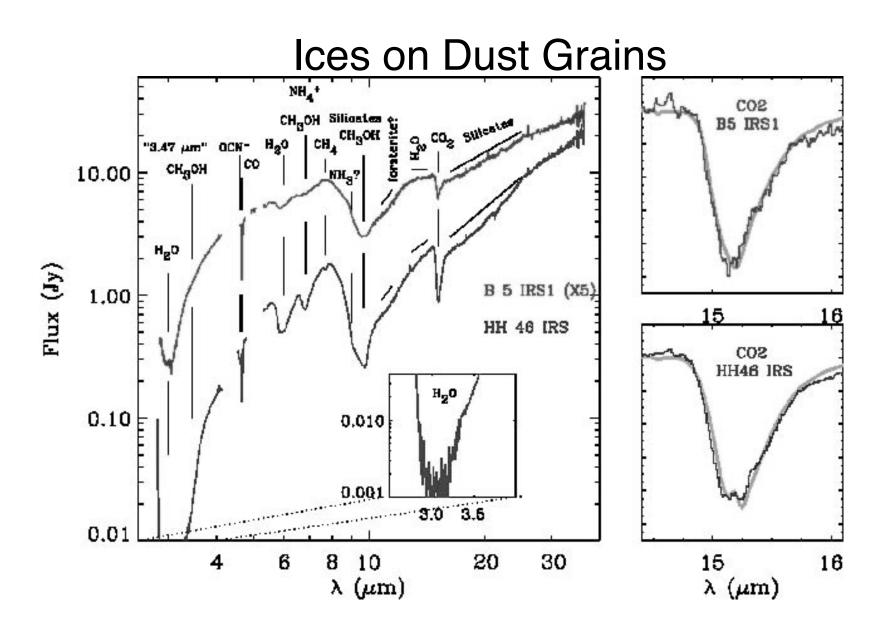
Formation of Interstellar Molecules

More complex molecules
 Problem is activation energy barrier
 T ~ 10 K << Barrier</p>
 Use reactions without activation energies
 e.g. Molecular ions, like HCO+



Ion - Molecule Reactions

Separation of Ion and Molecule


Molecules on Dust Grains

Infrared observations show this: as molecules Vibrate, absorb infrared

e.g. H_2O absorbs at 3×10^{-6} m

CH₄ absorbs at 8×10^{-6} m

Molecules on Dust Grains

Icy "mantles" contain H, O, C, N

Further reactions possible → more complex
molecules (e.g. Ethanol)

- → Building blocks of life ?
- → Life ??? Hoyle and Wickramasinghe

New stars and planets form in same regions

Implications

- 1. Similar (Carbon-Dominated) Chemistry
- 2. Direct Role in Origin of Life?
- 3. Formation + Destruction analogous to Early Earth

Roles of Dust

- Protection from UV
- 2. H₂ Formation
- Depletion → Mantles of Ice
 H₂O, NH₃, CH₄, CO₂, HCOOH, ...

Star Formation

First factor in Drake Equation: The rate of star formation

Estimate of Average Star Formation Rate (R_{*})

$$R_* = \frac{\text{\# of stars in galaxy}}{\text{lifetime of galaxy}} = \frac{N_*}{t_{gal}}$$

N_{*}: Count them? No
Use Gravity (Newton's Laws)

Sun orbiting center of galaxy at 250 km s⁻¹ (155 miles per second)

Kinetic energy = $\frac{1}{2}$ gravitational potential energy

$$\frac{1}{2} \ M_{\odot} \ v^2 \ = \ \frac{1}{2} \ \frac{G \ M_g \ M_{\odot}}{R_g} \qquad \qquad \underset{\text{from center of galaxy}}{\text{Distance of Sun}}$$

$$\frac{R_g v^2}{G} = M_g$$

Estimate of Average Star Formation Rate (R*)

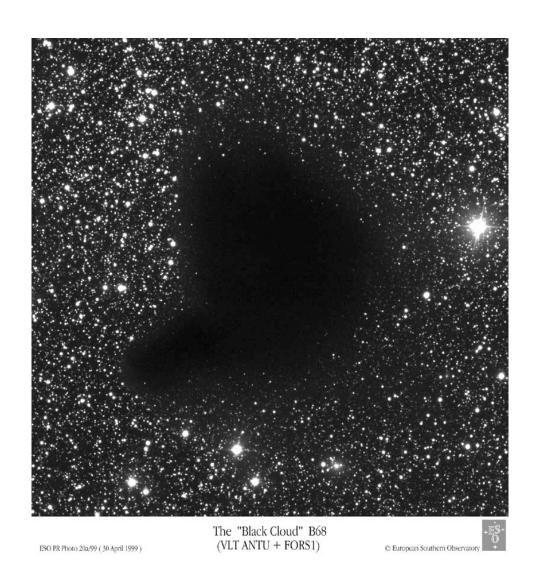
$$(R_g = 25,000 \text{ ly}) \rightarrow M_g = 1.0 \times 10^{11} \text{ M}_{\odot}$$

Add stars outside Sun's orbit ightarrow $M_g \, \simeq \, 1.6 imes 10^{11} \, M_\odot$

$$N_* \simeq M_g = 1.6 \times 10^{11} = 4 \times 10^{11}$$
Avg. mass of star 0.4

$$t_{gal} \simeq 10^{10} \text{ yr}$$
 (studies of old stars)

$$R_* \simeq \frac{4 \times 10^{11}}{10^{10}}$$
 stars = 40 stars per year (5 - 50)


Star Formation

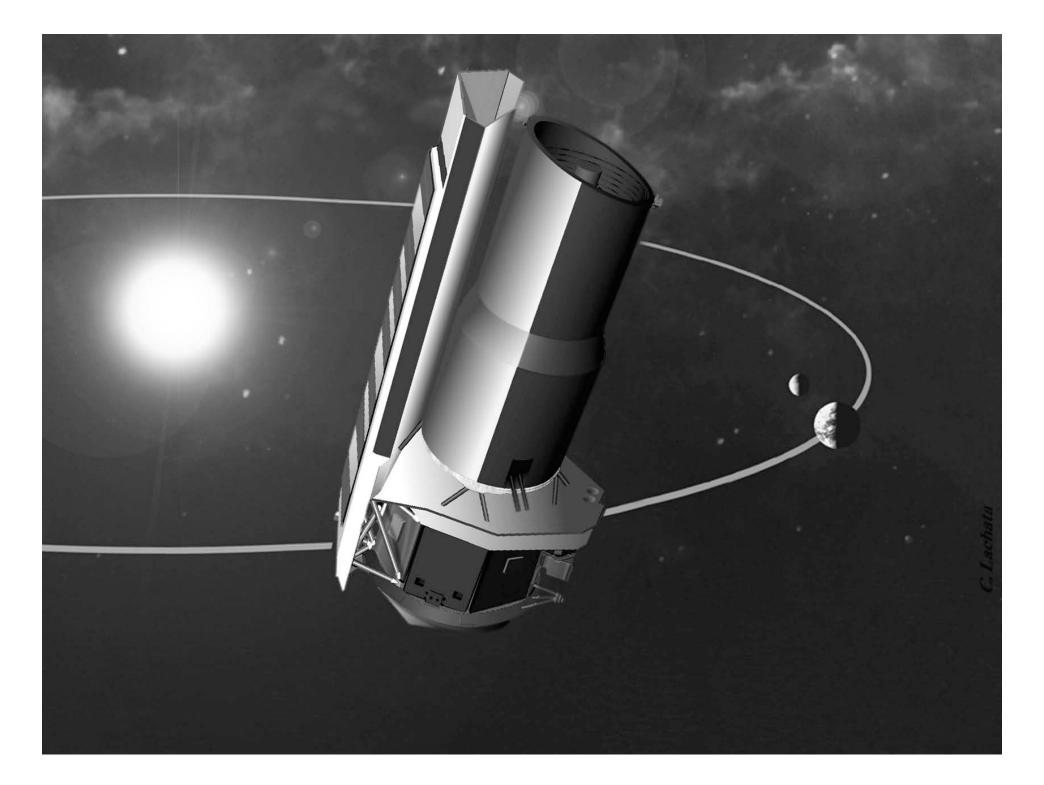
Current Star Formation

Molecular Clouds

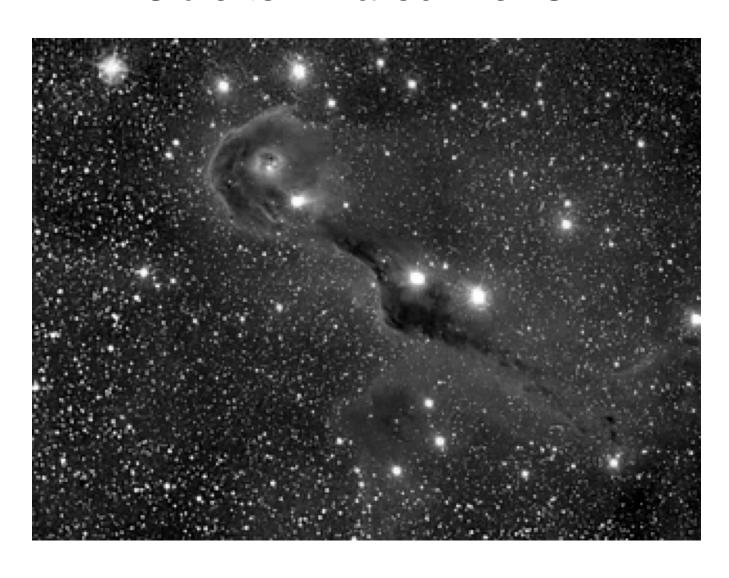
- Composition
 - H₂ (93%), He (6%)
 - Dust and other molecules (~1% by mass)
 - CO next most common after H₂, He
- Temperature about 10 K
- Density (particles per cubic cm)
 - $\sim 100 \text{ cm}^{-3} \text{ to } 10^6 \text{ cm}^{-3}$
 - Air has about 10¹⁹ cm⁻³
 - Water about 3 x 10²² cm⁻³
- Size 1-300 ly
- Mass 1 to 10⁶ M_{sun}

A Small Molecular Cloud

Current Star Formation

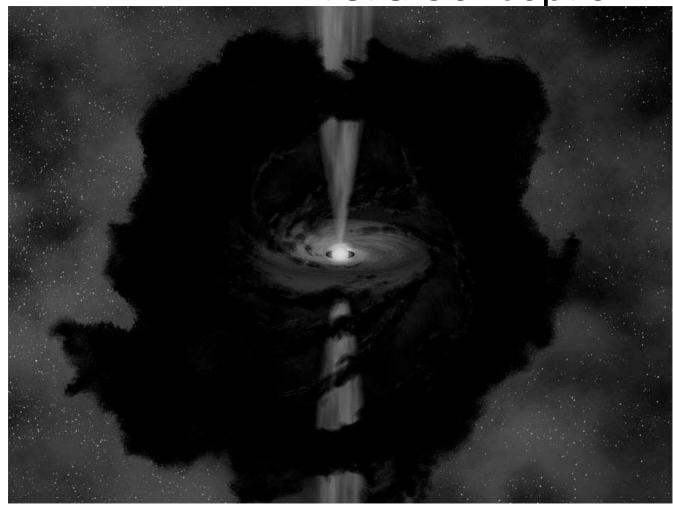

- Occurs in gas with heavy elements
 - Molecules and dust keep gas cool
 - Radiate energy released by collapse
 - Stars of lower mass can form
 - Mass needed for collapse increases with T
- Star formation is ongoing in our Galaxy
 - Massive stars are short-lived
 - Star formation observed in infrared

The Launch of The Spitzer Space Telescope

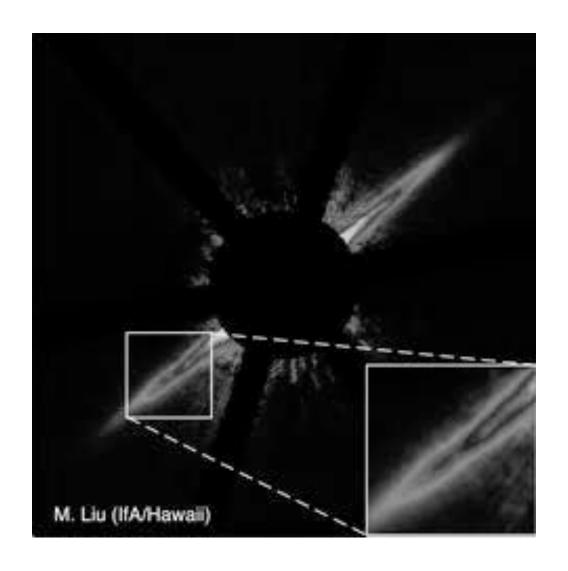



Spitzer Space Telescope Launched Aug. 2003, expect a 5 yr life.

Visible to Infrared Views



Artist's Conception


Features:
Dusty envelope
Rotation
Disk
Bipolar outflow

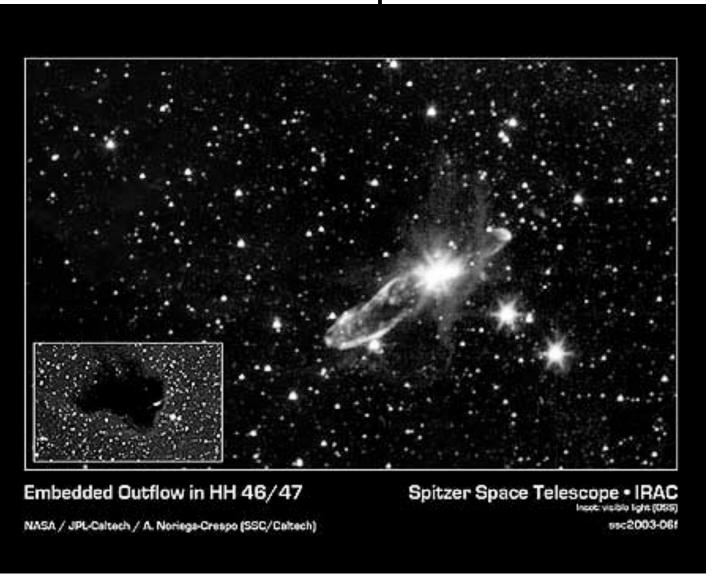
R. Hurt, SSC

The Protostar

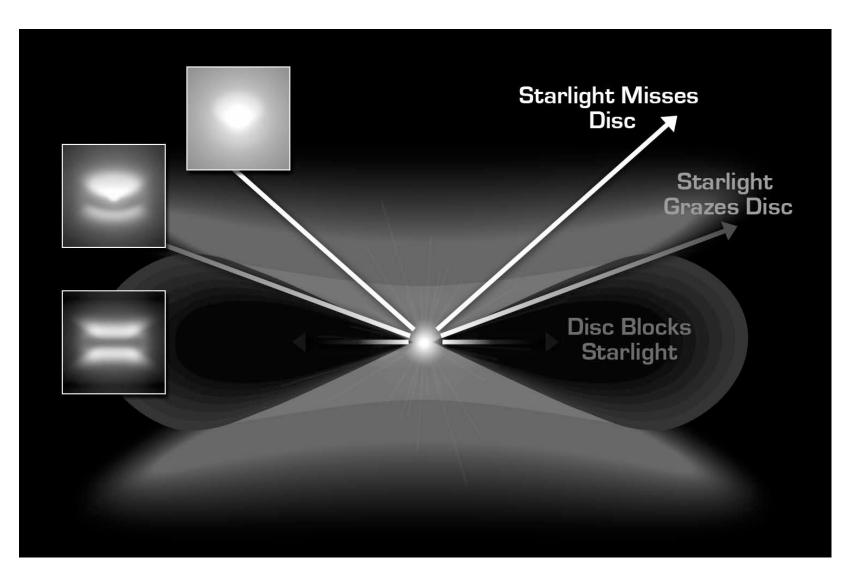
- Evolution of the collapsing gas cloud
 - At first, collapsing gas stays cool
 - Dust, gas emit photons, remove energy
 - At n $\sim 10^{11}$ cm⁻³, photons trapped
 - Gas heats up, dust destroyed, pressure rises
 - Core stops collapsing
 - The outer parts still falling in, adding mass
 - Core shrinks slowly, heats up
 - Fusion begins at $T \sim 10^7 \text{ K}$
 - Protostar becomes a main-sequence star

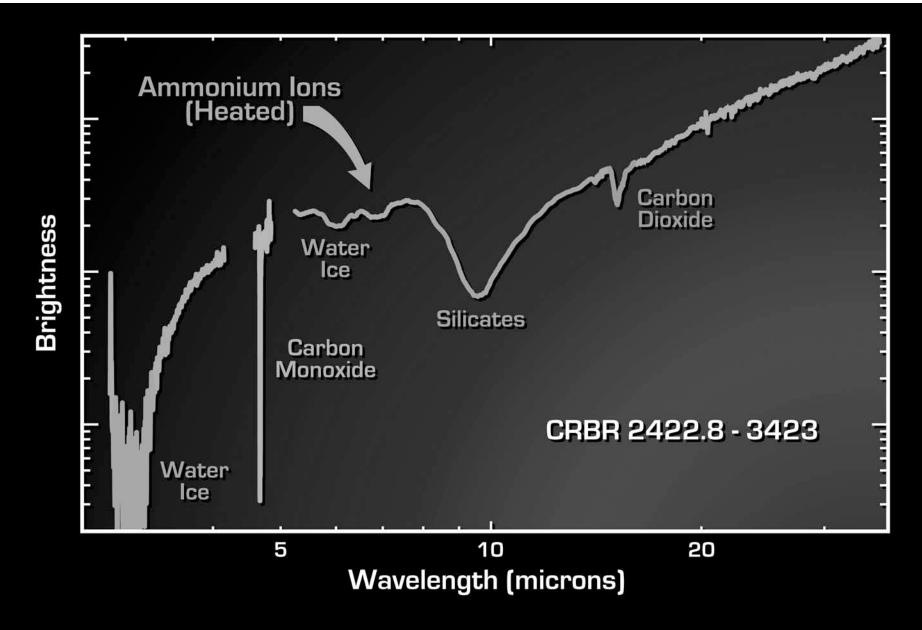
The Disk

The Star (AU Mic) is blocked in a coronograph.
Allows you to see disk. Dust in disk is heated by star and emits in infrared.


Angular Momentum

- Measure of tendency to rotate
 - -J = mvr
- Angular momentum is conserved
 - -J = constant
 - As gas contracts (r smaller), v increases
 - Faster rotation resists collapse
 - Gas settles into rotating disk
 - Protostar adds mass through the disk


The Wind


- Accretion from disk will spin up the star
 - Star would break apart if spins too fast
- Angular momentum must be carried off
- The star-disk interaction creates a wind
- The wind carries mass to large distances
 - J = mvr, small amount of m at very large r
 - Allows star to avoid rotating too fast
- Wind turns into bipolar jet
 - Sweeps out cavity

The Bipolar Jet

Studying the Disk

Ices in a Protoplanetary Disc

Spitzer Space Telescope • IRS
ESO • VLT-ISAAC
ssc2004-20c