Cosmological Parameters

- Composition of the universe
 - What fraction is in the form of matter? Ω_m
 - Always positive.
 - What fraction is in the form of curvature? Ω_k
 - Can be positive (hyperbolic) or negative (spherical).
 - What fraction is in the form of cosmological constant? Ω_{Λ}
 - Can be positive (anti-gravity) or negative (extra gravity).
- Expansion of the universe
 - How fast is the universe expanding? *H*
 - Can be positive (expanding) or negative (collapsing)
 - Is the universe decelerating, or accelerating? q
 - Can be positive (decelerating) or negative (accelerating)

Many Universes (Fig 18.13 on pp.367)

- Friedmann universes (No cosmological constant $\hat{\Omega}_{\Lambda} = 0$)
 - $-1 = \Omega_m + \Omega_k$
 - $\Omega_k > 0$: "Open" universe
 - $\Omega_k = 0$: "Flat" universe (a.k.a. Einstein-de Sitter universe: $\Omega_m = 1$)
 - $\Omega_k^* < 0$: "Closed" universe
 - $-q = \Omega_{\rm m}/2$
 - q > 0: Expansion always decelerates in Friedmann universes
 - q=1/2 for the Einstein-de Sitter universe
- Friedmann-Lemaitre universes (W/ cosmological constant)
 - $-1 = \Omega_m + \Omega_k + \Omega_\Lambda$
 - Fate of the universe depends on Ω_Λ as well as Ω_k
 - $-q = \Omega_{\rm m}/2 \Omega_{\Lambda}$
 - q can be negative: acceleration is possible
- http://www.as.utexas.edu/~cosmo/expansion.php
 - Cosmology web created by two undergraduate students
 - Farhan Amanullar & Galen Carter-Jeffery

Defining Cosmological Parameters • We start from the three fundamental cosmological

- We start from the three fundamental cosmological equations
 - $-H^2 = (8\pi G/3)\rho + C/L^2 + A/3$: Friedmann-Lemaitre eq.
 - $-a = -(4\pi G/3)\rho L + \Lambda L/3$

-L=Rl

- : Acceleration eq. : Expansion of length
- Using the third equation, the first two equations may be rewritten as
 - $H^2 = (8\pi G/3)\rho k/R^2 + \Lambda/3$ (note that $k = -C/l^2$)
 - $-a/(Rl) = (4\pi G/3)\rho \Lambda/3$
- Dividing both sides by H^2 , we get
 - $1 = (8\pi G/3H^2)\rho k/(R^2H^2) + \Lambda/(3H^2)$
 - $q = -a/(RlH^2) = (4\pi G/3)(\rho H^2) \Lambda/(3H^2)$
- These equations define "Cosmological Parameters" as: $-1 = \Omega_m + \Omega_k + \Omega_\Lambda$ $-q = \Omega_m/2 - \Omega_\Lambda$

Expansion History

- Cosmological parameters evolve with time.
 - Different terms are dominant at different times.
 - $H^2 = (8\pi G/3)\rho k/R^2 + \Lambda/3$
 - Matter density, ρ , decreases as $1/R^3$
 - k/R^2 decreases as $1/R^2$
 - Λ is constant
- All universes would look like the Einstein-de Sitter universe in the past.
 - But, the present and future behavior can be very different depending on cosmological parameters.
 - Values of the **present-day** cosmological parameters:
 - $\Omega_{\rm m} = 0.3$
 - $\Omega_{\Lambda} = 0.7$
 - $\Omega_k = 0$
- Think about what radiation would do...

Type Ia Supernovae

- Explosion of a white dwarf with a companion star.
- A single type Ia supernova is as bright as the entire galaxy.
 - Supernovae can be seen at **billions** of light years away!
- Luminosity is approximately the same for all type Ia supernovae.
 - Type Ia supernova is a *standard candle*.
- How do we know that they are standard candles?
 - Search for type Ia supernovae at distant galaxies with known distances (distances measured by the Cepheid variable stars)
 - Compute and compare luminosities they are approximately the same.
- Using Type Ia supernovae, we can measure distances up to about redshift of unity, or 10 billion light years away.

Velocity-distance Law: Subtleties

- *V=HL*
 - The velocity-distance law is valid throughout the entire universe.
 - But, subtlety occurs when we try to measure this relation at great distances (say, at more than 10 billion years away, or z>1).
- Subtlety 1: What do we mean by *L*?
 - We cannot measure the current distance to a galaxy at z>1, because we can only see its past figure.
 - We can only measure L in the past!
- Subtlety 2: What do we mean by *H*?
 - The expansion rate changes with time.
 - By measuring the distance to a galaxy at z>1, we are measuring H in the past!
- Subtlety 3: What do we mean by *V*?
 - V = cz can no longer be used.
 - In fact, $V\,{\rm cannot}$ be measured observationally anymore!

Hubble Key Project

- One of the key projects of the *Hubble Space Telescope* was to accurately determine the velocity-distance relation and the Hubble's parameter **<u>at present</u>**.
 - The HST observed many Cepheid variable stars and obtained distances.
 - Comparing the distances to the measured redshifts, the Hubble's parameter is obtained.
- Disputes before the HST
 - Alan Sandage and Gustav Tammann
 H=50 kilometers/s/megaparsec
 - Gerard de Vaucouleurs
 - H=100 kilometers/s/megaparsec
- The HST Key Project
 - H=70 kilometers/s/megaparsec
 - Right in the middle.

World Map & World Picture

- World map "Theorist's view"
 - The entire universe at any instant can be viewed.
 - *V*=*HL* can be defined unambiguously.
- World picture "Observer's view"
 - Observations are limited to within the "light cone".
 - *V*=*HL* cannot be measured directly.

Alternative Methods

- Let's forget about using *V*=*HL*.
 - What else can we use to measure cosmological parameters?
- What can we measure? "Observables"
 - Redshift
 - Brightness
 - -Size
- Candidate 1: Brightness-Redshift relation
 - Supernovae
- Candidate 2: Size-Redshift relation
 - Cosmic Microwave Background

Brightness-Redshift Relation

• Use the "Standard Candle".

- The key relation: the inverse square law
 - Brightness = Luminosity/ $(4\pi \text{ x Distance}^2)$
 - We measure brightness; we know luminosity (SNIa)
 - Distance² = Luminosity/(4π x Brightness)
 - This distance, determined from the luminosity, is called the "luminosity distance"
 - The luminosity distance is related to the world-map distance, but not the same.
 - The luminosity distance depends on z as well as cosmological parameters such as $H, \Omega_m, \Omega_k, \Omega_\Lambda$
- Therefore, by comparing the inferred luminosity distance with the measured redshifts, one can derive the cosmological parameters.

Application: Type Ia Supernovae

•Supernovae appear to be **dimmer** (i.e., the inferred luminosity distance is much too large) than expected from the Einstein-de Sitter universe or universe without dark energy •Expansion was

faster than expected \rightarrow Dark energy

Size-Redshift Relation

- Use the "Standard Ruler".
- The key relation: the size-angle relation
 - Angle = Size/Distance
 - We measure angle: we know size
 - Distance = Size/Angle
 - This distance, determined from the luminosity, is called the "angular diameter distance"
 - The angular diameter distance is related to the world-map distance, but not the same.
 - Angular diameter distance = Luminosity distance / $(1+z)^2$
 - The angular diameter distance depends on z as well as cosmological parameters such as $H, \Omega_m, \Omega_k, \Omega_\Lambda$
- Therefore, by comparing the inferred angular diameter distance with the measured redshifts, one can derive the cosmological parameters

