Black Hole

- One might ask: what would happen when the escape velocity equals the speed of light?
 - Even the light cannot escape: Black Hole
 - Escape Velocity: $v^2 = 2GM/R$
 - Black holes should be either very massive or very small.
- Schwarzchild radius
 - $-R_S = 2GM/c^2$
 - \sim 3 km for the solar mass
 - ~9 mm for the Earth mass
 - A characteristic size of black holes
- Spacetime of BH is positively curved

Space-time Dist. in Curved Spacetime

- In flat spacetime (Minkowski spacetime), a spacetime distance between two events is given by
 - (Spacetime Distance)² = $(t-int.)^2 (x-int.)^2$ - $ds^2 = (cdt)^{2-} dx^2$
- In curved space (Riemannian spacetime),
 - (Spacetime Distance)²
 - = $F(t-int.)^2 2G(t-int.)(x-int.) H(x-int.)^2$
 - $-ds^2 = F(cdt)^2 2Gcdtdx Hdx^2$
 - ds^2 is still invariant it does not depend on observers.

Spatial Distance in Curved Space

- In flat space (Euclidean space), a distance between two points on a surface is given by

 (Distance)² = (x-int.)² + (y-int.)²
 ds² = dx² + dy²
- In curved space (non-Euclidean), Euclidean formula no longer applies:
 - (Distance)²
 - $= F(x-int.)^2 + 2G(x-int.)(y-int.) + H(y-int.)^2$
 - $-ds^2 = Fdx^2 + 2Gdxdy + Hdy^2$
 - F, G, H : Metric Coefficients
 - Metric coefficients generally depend on *x* and *y*

Spacetime Metric of BH

$$ds^{2} = \left(1 - \frac{R_{s}}{R}\right)c^{2}dt^{2} - \left[\frac{dR^{2}}{1 - \frac{R_{s}}{R}} + R^{2}d\Omega^{2}\right]$$

- Schwarzschild metric
 - This formula describes spacetime around a spherical, non-rotating object.
- Not only space is curved, but also time is curved.

Time Dilation and Light Deflection

- Two observers, A and B.
 - A is a "distant observer", very far away from BH
 - B is falling into BH
- A sees B's time flowing very slowly: $-(\Delta t_{A}) = (\Delta t_{B})/\sqrt{(1 - R_{S}/R)}$
- A sees the wavelength of light emitted by B being streched by
 - $-(\lambda_A) = (\lambda_B)/\sqrt{(1 R_S/R)}$
- A sees the direction of light emitted from behind BH being deflected.
 - R~1.5 R_S : photon sphere
 - $R \sim \sqrt{3} x$ (photon sphere) : capture radius

- Schwarzschild radius = Event Horizon
 - $-\operatorname{No}$ information can get out of the event horizon

B's View

- An observer B, who is freely falling into BH, would not notice he would be falling into BH (Equivalence Principle) except for tidal force.
 - His feet are pulled more strongly than his head
- The sign of redshift and time dilation is reversed:
 - B sees the wavelength of light coming from the outside world being blueshifted.
 - B sees time of the outside world flowing very fast.

Is Black Hole Truly "Black"?

- Hawking Radiation
 - $-\,$ The effect that appears when GR and QM are both considered.
 - The result: a black hole actually emits black-body (thermal) radiation.
- In QM world, a pair of particles are constantly created; however, these particles must annihilate away in a very short period of time.
 - Uncertainty Relation between energy and time is given by $\Delta E \Delta t{=}h$
 - A pair of two electrons can survive for 10^{-21} seconds
 - A pair of two protons can survive for $10^{\text{-}24}$ seconds
- What if these particles are created near the event horizon?

Evaporation of Black Holes

- Particles created near the event horizon carry energy away from BH.
- Mass of BH decreases!
 - Temperature of BH = 10^{-7} K (solar mass/M)
 - BH of Earth's mass: 0.01 K
 - BH of 1/10 Lunar mass: 10 K
 - Smaller BHs emit more energy.
- Evaporation time = 10^{62} (M/solar mass)³ years
 - Black holes would evaporate on this time scale.
- "BH is a heat engine"
 - It swallows stuff and converts it to energy.