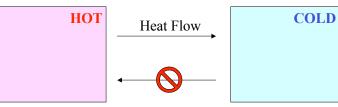
"Perfect" Cosmological Principle?

- Perfect *symmetry* in space <u>and time</u>
 - No special locations exist in space and time
 - No special directions exist in space and time
- If the perfect cosmological principle is valid, the physical state of the universe should not change in time. This idea leads to:
 - Static Universe: the universe does not expand.
 - Steady-state Universe: the universe expands at a constant rate. Matter continuously created.
- Now we know that the universe is not symmetric in time it's homogeneous and isotropic only in space.
 - Example 1: There is the beginning of time.
 - Example 2: The universe cools down as it expands.
 - Example 3: There were more quasars in the past.

The 2nd Law of Thermodynamics



- The 2nd law of thermodynamics states that:
 - Heat always flows from hot to cold, when no extra work is done to the system.
 - How do we know it? We know it from experiences.
- This law results in the increase of entropy, which is given by the amount of heat given to the system per unit temperature.

Arrow of Time

- Symmetry is broken!
 - Space: Reversible
 - Time: Irreversible
- Why should **time** be so special in four dimension?
 - Relativistic theory (which unifies space and time and treats "spacetime" as the fundamental object) does not tell us that time must be special.
 - In fact, almost all fundamental theories of physics posses time reversibility.
 - However, "everyday" (macroscopic) phenomena, such as thermodynamics, posses time irreversibility.
 - E.g., 2nd law of thermodynamics entropy always either increases or remains the same.
- Thermodynamic Entropy, S
 S = O/T [joules/Kelvin]

Entropy

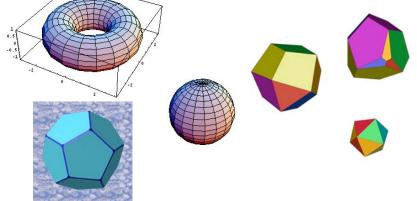
- $\mathbf{s} = \mathbf{Q}/\mathbf{I}$ [joures/Keivin]
- -Q: the amount of heat given to the system
- *T*: temperature of the system
- Example: add a cup of boiled water to either (a) boiled water, or (b) cold water
 - The change caused by adding a cup of boiled water is more dramatic for the case (b)
 - A larger increase of entropy for colder system.
 - In this example, entropy measures the "degree of disturbance", or "complexity".
- Entropy is closely related to the amount of information:
 - S can also be written as $S = N k_B \log(W)$
 - N: the number of particles in the system
 - $-k_B$: the Boltzmann constant
 - *W*: the number of possible states in the system

The Edge of the Universe?

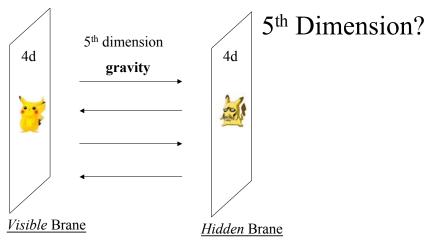
• FAQ

- Is there the edge of the Universe?
- What's there outside of the Universe?
- What is the Universe expanding into?
- What was there before the Big Bang?
- Where did the Big Bang occur?

The Shape of the Universe?



• CAUTION: we are living on the **3-dimensional** surface. Since it is not possible to visualize the 3-d surface, here are shown the 2-d ones.



- There may be another world, and there may exist the 5th dimension...
 - Only gravity can communicate between the two "branes"
 - ("brane" came from "membrane".)

Curved Space

- Euclidean geometry is "flat"
 - Imagine that you have a piece of paper and a ball.
 - A piece of paper has no curvature
 - The surface of a ball is "curved" there is curvature
- Curved space cannot be described by the Euclidean geometry; therefore, it is called **non-Euclidean**.
- In curved space, there is a characteristic length scale, *R*.
 - $-\,$ Example: the surface of the Earth
 - How do we know that the surface of the Earth is curved?
- Homogeneous and isotropic non-Euclidean geometry
 - Spherical geometry
 - Hyperbolic geometry
- Is our universe flat, spherical, or hyperbolic?

Euclidean Axioms (Postulates)

- 1. A straight line can be drawn between any two points
- 2. A finite line can be extended infinitely in both directions
 - A circle can be drawn with any center and any radius
 - . All right angles are equal to each other

Euclid (325-270 B.C.) 5.

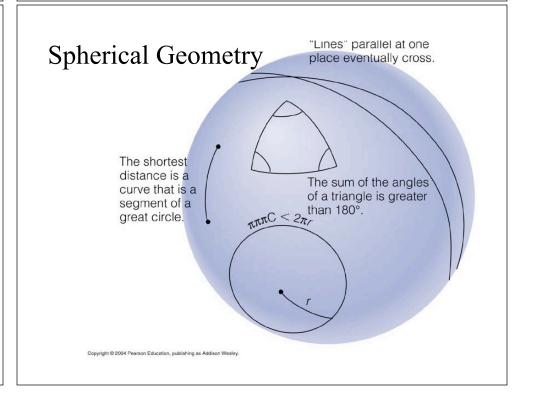
- 5. Given a line and a point not on the line, only one line can be drawn through the point parallel to the line
 - Euclidean parallel postulate

Parallel Postulate

- Parallel lines = Lines that do not intersect each other
- How do we know that two lines that appear to be parallel **continue to be parallel when extended to large distances**?
- "Parallel postulate" is valid only for the Euclidean geometry there are many other geometries, **non-Euclidean geometries**, for which the parallel postulate is invalid.

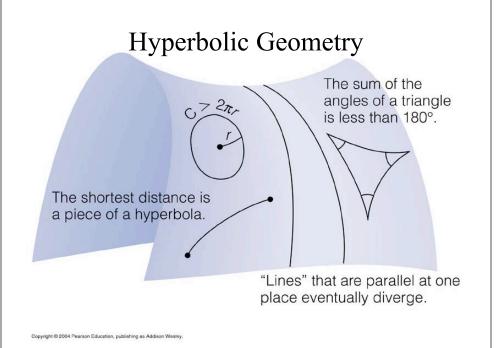
Spherical Geometry

- It's basically the surface of a sphere.
- All lines will eventually intersect: no parallel lines exist!
 - Euclid had to extend his "parallel" lines to very large distances on the Earth before he noticed this fact.
- In spherical geometry, the sum of the interior angles of a triangle is greater than two right angles (π=180 degrees)
 - In flat geometry, the sum of the angles of a triangle must always be 180 degrees.
- The circumference of a circle is less than π times its diameter.
 - In flat geometry, the circumference of a circle must always be π times its diameter.



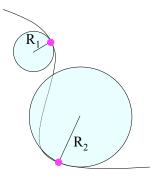
Hyperbolic Geometry

- It's similar to the surface of a horse's saddle.
 - But it is not possible to draw a *real* hyperbolic geometry, where space is homogeneous and isotropic
- Not only one, but many other lines do not intersect: *many parallel lines exist!*
- In hyperbolic geometry, the sum of the interior angles of a triangle is less than two right angles (π=180 degrees)
- The circumference of a circle is greater than π times its diameter.



Curvature

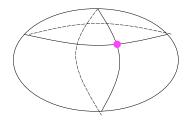
- How curved is it?
 - The radius of an *osculating circle* can be used to measure curvature of a line at a given point.
 - Curvature = 1/(curvature radius)
 - Curvature is in units of 1/length
 - The signs posted on the road saying "*R*=300ft" or "*R*=500ft"
 - Which one is more curved?
- A straight line (zero curvature) has *R*=infinity

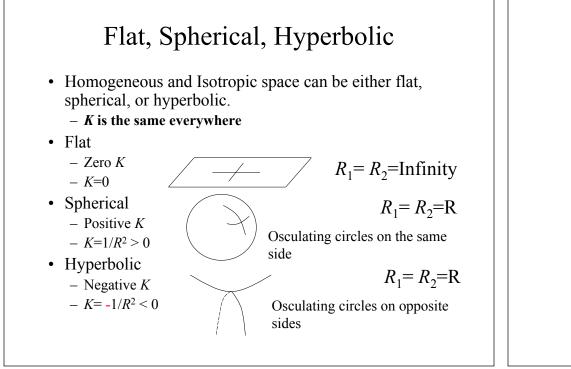


Gaussian Curvature

- Curvature of a surface
 - Draw two principal osculating circles at a given point on the surface
 - Obtain two principal curvature radii, R_1 and R_2
 - Gaussian curvature is given by $1/(R_1 R_2)$, up to the overall sign.
- *K*=Gaussian curvature - *K* is in units of 1/area

Johann Carl Friedrich Gauss (1777-1855)





Measuring Curvature

- θ =Sum of the angles of a triangle minus π
 - $\theta = K x$ (area of triangle)
 - $\theta = 0$ (flat)
 - $\theta > 0$ (spherical)
 - $\theta < 0$ (hyperbolic)
- θ=Change in direction of an arrow through a closed circuit of the "vector transport"
 θ K v (area analoged by given it)
 - $\theta = K x$ (area enclosed by circuit)
 - This is neat try it yourself!