How long would the Sun shine?

- The Sun needs fuel to shine.
 - The Sun shines by consuming the fuel -- it generates energy from the fuel.
- The lifetime of the Sun is determined by
 - How fast the Sun consumes the fuel, and
 - How much fuel the Sun contains.
- How fast does the Sun consume the fuel?
 - Energy radiated per second is called the "*luminosity*", which is in units of watts.
 - The solar luminosity is about 3.8×10^{26} Watts.
 - Watts = Joules per second
 - Compare it with a light bulb!
- What is the fuel??

Fuel = Nuclear Energy

- Einstein's Energy Formula: $E=Mc^2$
 - The mass itself can be the source of energy.
- If the Sun could convert *all* of its mass into energy by $E=Mc^2...$
 - Mass energy = 1.8×10^{47} Joules.
 - Compare it with the gravitational energy, 2.3 x 10⁴¹ Joules, which can keep the Sun shining for 20 million years.
 - The Sun would shine for about 15 trillion years on mass energy!
- How can the mass be converted into energy?
 - Nuclear reaction
 - Nuclear reaction in the Sun can convert $\sim 0.07\%$ of the mass into energy.
- Therefore, the Sun shines for...
 - -~15 trillion years x 0.0007 ~ 10 billion years

Fuel = Gravitational Energy?

- The mass of the Sun is M = 2 x 10³⁰ kg.
 The amount of the fuel should be related to the amount of
 - mass.
- Gravity can generate energy.
 - A falling body acquires velocity from gravity.
 - Gravitational energy = $(3/5)GM^2/R$
 - The radius of the Sun: R = 700 million m
 - Gravitational energy of the Sun = 2.3×10^{41} Joules.
- How long could the Sun shine on gravitational energy?
 - Lifetime = (Amount of Fuel)/(How Fast the Fuel is Consumed)
 - Lifetime = $(2.3 \times 10^{41} \text{ Joules})/(3.8 \times 10^{26} \text{ Joules per second}) = 0.6 \times 10^{15} \text{ seconds.}$
 - Therefore, the Sun lasts for **20 million years** (Helmholtz in 1854; Kelvin in 1887), if gravity is the fuel.

Burning Hydrogen: p-p chain

- ${}^{1}H + {}^{1}H -> {}^{2}H + e^{+} + v_{e}$
- ${}^{2}H + {}^{1}H -> {}^{3}He + \gamma$
- ${}^{3}\text{He} + {}^{3}\text{He} -> {}^{4}\text{He} + {}^{1}\text{H} + {}^{1}\text{H}$
 - ¹H: proton, ²H: deuteron
 - ³He: Helium-3, ⁴He: Helium-4
 - e⁺: positron, v_e : neutrino, γ : gamma ray
- In total, four protons are fused into one helium-4 and produce energy:
 - ¹H + ¹H + ¹H + ¹H -> ⁴He + "binding energy"
 - One proton weighs $1.6726 \text{ x } 10^{-27} \text{ kg}$
 - One helium-4 weighs 6.643 x 10^{-27} kg
 - Four protons minus one helium = $4.7 \times 10^{-29} \text{ kg}$ -> energy
 - This is 0.7% of the original mass of four protons.

How Hot is the Sun?

- Hydrogen gas is pulled inward by gravity.
- Hydrogen Gas is pushed outward by pressure.
 - Nuclear energy heats up gas -> high pressure
 - Pressure = $k_B x$ (number density of hydrogen) x (temperature)
 - Pressure is the highest at the center and decreases at larger distances.
- "Hydrostatic equilibrium" = "Pressure force balances gravitational force"
 - Gravity = GM^2/R^2
 - Pressure = $k_B nT$
 - Calculations show that temperature should be ${\sim}20$ million K
 - High temperature is necessary to balance enormous gravity.

Core is Hotter, Surface is Cooler

- Core (0-0.25 R_{solar}): ~15 million K
 - Energy is produced by hydrogen burning
- Radiative zone (0.25-0.70 R_{solar}): 2 to 8 million K
 - Energy is carried by radiation (photons) up to near the surface of the Sun
 - Photons frequently scattered by electrons (random walk)
- Convective zone (0.70-1 R_{solar}): < 2 million K
 - Photons are absorbed by atoms near the surface; unable to carry energy
 - Energy is then carried by "convection" (e.g., boiled water)
- Surface: 5,800 K
 - It takes about a million years from the core to the surface.

Fate of the Sun

- The Sun will eventually run out of fuel...
 - The Sun is about 5 billion years old.
 - Hydrogen burning can keep the Sun shining for about 10 billion years.
- What would happen after that?
 - The Sun will find another source of fuel: Helium
- When hydrogen nuclei are exhausted, the Sun begins to contract, getting hotter.
- When temperature in the core increases to ~100 million K, helium begins to burn, generating nuclear energy again. The surface of the star expands.
 - ⁴He + ⁴He + ⁴He + ⁴He -> ¹²C + (binding energy)
- When helium nuclei are exhausted, the star wants to burn carbon, but a low-mass star can't burn it...
 - ${}^{12}C + {}^{4}He \rightarrow {}^{16}O + (binding energy)$; this reaction requires ~600 million K! So, a low-mass star becomes a carbon star.

White Dwarfs and Planetary Nebulae

- Expanding gas gets **ionized** by radiation from the central core
- The carbon core became a "White Dwarf"
 - Supported by "degeneracy pressure"
- The expanding gas
 - Planetary nebula

Type Ia Supernovae

- If the W.D. has a companion star, mass from the companion accretes on the W.D., increasing mass.
- At some point (M>1.4M_{solar}), carbon begins to burn!
 - The "carbon bomb" disrupts the W.D. completely
 - This type of supernova is called the "Type Ia", and plays a very important role in cosmology

Importance of Type Ia in Cosmology

Type Ia supernova

- We can estimate distances to Type Ia supernovae fairly accurately.
 - Because they all explode at the same mass $({\sim}1.44 M_{solar}),$ their luminosity is roughly the same for all Type Ia.
 - We measure their brightness.
 - We know their luminosity.
 - Luminosity-brightness relation gives distances.
- *Distance-redshift relation* is one of the fundamental cosmological probes.
- How do we find Type Ia?
 - No hydrogen line should be seen for Type Ia

What about Type II?

- M>2M_{solar}
 - More mass, more gravity -> More pressure, higher temperature
 - Hydrogen and helium are much more rapidly consumed (~a few 100,000 years or less vs billions of years)
 - Then, carbon does fuse!! (E.g., ${}^{12}C + {}^{4}He \rightarrow {}^{16}O$)
 - Heavier elements are also burned one after another.
 - E.g., ${}^{16}\text{O} + {}^{4}\text{He} \rightarrow {}^{20}\text{Ne}$, ${}^{20}\text{Ne} + {}^{4}\text{He} \rightarrow {}^{24}\text{Mg}$
 - E.g., ${}^{12}C + {}^{16}O \rightarrow {}^{28}Si$, ${}^{28}Si + {}^{28}Si \rightarrow {}^{56}Fe$
 - Iron (⁵⁶Fe) is the terminal: no more energy gain by fusion.
 - The core keeps shrinking... Gravitational force is not balanced by thermal pressure... Where would the gravitational energy go...
 - Type II Supernova !! (Hydrogen lines should be seen.)
- Intermediate mass stars (8M_{solar}>M>2M_{solar})
 - The core becomes a neutron star (~10km across; rapidly rotating)
- Very high mass stars (M>8M_{solar})
 - The core collapses into a black hole

Binding Energy Diagram

- Fusion generates energy until it reaches the "iron peak".
- Fission generates energy by destroying nuclei heavier than iron.

Life and Low- and High-mass Stars

- Low-mass stars are necessary for life because...
 - Planets can form around low mass stars
 - Stars live long enough (~billions of years) for complex form of life to emerge
- High-mass stars are necessary for life because...
 - Low-mass stars alone cannot produce important heavy elements such as carbon, oxygen, nitrogen, etc.
 - High-mass stars can create heavy elements by fusion, and eject the created elements into space by Type II supernova explosion.
- Life is not possible without both!