AST 309L Review Questions for Third Midterm Spring 2006

This test covers Chapters 6 through 7. That means it covers the Drake equation factors f_i , f_c , and L.

- A. Biological Evolution: understand the fossil record, the idea of biological evolution, and different ideas for how it works.
- 1. Describe in general terms how radioactive dating of fossils is done. How is it used to assign ages to fossils?
- 2. Distinguish between prokaryotes and eukaryotes and between heterotrophs and autotrophs. What are the traditional 5 kingdoms of life? Describe the 3 domains of life and why that new level above the kingdom was needed.
- 3. On a scale of hundreds of millions to billions of years, cite 7 or 8 important events in the fossil record of life on Earth, along with the time that they occurred.
- 4. Explain how evolution occurs. Your answer should explain random, inheritable variations and natural selection. Explain the roles of both heredity and environment.
- 5. How is sexual reproduction important in evolution?
- 6. Distinguish between gradualism and punctuated equilibrium.
- 7. Describe the different interpretations of the Burgess Shale by Gould and by Conway Morris in the context of whether evolution tends to produce "higher" life forms. What do they mean by contingency and convergent evolution?
- B. Evolution of Intelligence: understand what is meant by intelligence and how it has changed in the process of evolution; understand the evolution leading to H. sapiens.
- 1. Define intelligence. In your own words, explain the graph that plots the number of bits of information versus time in the past. What criticisms could we make of this graph?
- 2. On a scale of millions of years, combine the information on the evolution of our class, order, family, genus, and species from the tables on various pages in the book. Give times, fossils, and characteristics (about 8 entries).
- 3. Describe primate evolution from the late Cretaceous period up until 6 million years ago.

- 4. Describe hominid evolution from 6 Myr ago until the present time. Be able to draw a family tree and indicate gradualist and punctuated-equilibrium interpretations.
- 5. What are the possible implications of the fact that it took over 4 billion years for life on Earth to evolve to human level intelligence?
- 6. Review the arguments by Ward and Brownlee in their book **Rare Earth**, that complex, intelligent life has much more stringent environmental requirements. Explain the Galactic Habitable Zone. Why might intelligent life be rare in regions close to the center of our Galaxy?
- 7. How does evidence of intelligence in other species affect your thinking about f_i ?
- 8. All of the material in chapter 6 addresses the Drake Equation factor, f_i. In selecting your value for f_i and developing your argument, you may want to consider at least the following:
 - increase in complexity
 - environment
 - evolutionary rate
 - uniqueness of human intelligence
 - linkage with other traits

Warning: Do not confuse this factor with f_{ℓ} , which is given at this point, nor f_{c} , which is yet to come.

C. Considerations about f_c .

- 1. Our cultural evolution over the past 10,000 years has led to our capability to communicate with ETI. Select 3 milestones in cultural evolution, indicate their approximate date, and explain their significance. Draw a diagram that indicates the connections between agriculture, specialization, barter, taxes, written language, *etc*. How likely is it that each of these milestones would occur on other planets with intelligent life?
- 2. An interest in interstellar communication requires a worldview with a particular combination of understandings and beliefs. What are the necessary components of such a worldview?

3.	How did the following people contribute (c	or not) to the development of our worldvie	w?
	 ancient civilizations 	— Kepler	

the ancient Greeks
Ptolemy
Galileo
Newton

— Aquinas	Darwin
— Bruno	 Miller and Urey
Copernicus	— Drake
— Brahe	

- 4. What are the arguments for why a civilization with a technology advanced enough for interstellar communication would also be *interested* in such communication? What are the arguments against this view?
- 5. Do science and technology confer a selective advantage on the society that develops them? Cite examples in support of your answer.
- 6. What value have you chosen for f_C? Suggest several reasons for its value to be less than 1. That is, what are some possible scenarios for intelligent life on another planet NOT to develop the capability for and interest in interstellar communication?

D. How Long Does a Technological Civilization Last (L)?

- 1. Describe four scenarios in which a civilization would cease to be communicable and note the timescales of relevance.
- 2. Describe problems of resource depletion, pollution, and global warming that might limit L.
- 3. Describe the population explosion. What was the demographic transition? How does the population explosion affect other societal problems that may threaten our civilization?
- 4. What is the relation between economic development, population growth, and resource depletion?
- 5. Which catastrophes "share" the possible effect of a drastic rise or drop in global temperature? On what timescales might they be a problem?
- 6. Identify several astronomical catastrophes that could end our technological civilization. Briefly describe the effects of each and their possible impact on the value of L.
- 7. List the threats to our civilization that are likely to operate on the following timescales: decades, millennia, millions of years, billions of years.
- 8. What value have you chosen for L? What are your reasons for choosing it? (Include possible threats you discount as well as those you believe will limit L).

E. The Future of Humankind in the Solar System

1. Describe a scenario for terraforming Mars.

- 2. Define briefly the following terms: terraforming, space colony, Von Neumann device, Dyson sphere.
- 3. Define and explain the four quantities that characterize rockets. Give an example of each quantity.

F. Broader Questions

- 1. Describe the further increase in complexity associated with the evolution of intelligence. At what point did the microscopic cross the threshold to the macroscopic?
- 2. Some have argued that societies that develop the capability for interstellar communication, namely sophisticated technology, will also develop the tendency toward self-destruction, either by resource depletion or by nuclear war, thus ensuring a low value for L. What do you think of this argument?
- 2. Compare the pace of chemical, biological, and cultural evolution. Which sets the timescale for the emergence of new technological civilizations?