Travel

Recall Argument Against Travel Communication is much cheaper than travel Energy needed for Mass (M) at speed (v) E = 1/2 Mv² if v much less than c e.g., travel to nearest star (4 ℓ y) in 40 yr \Rightarrow v = 0.1 c \Rightarrow E = 4.1 × 10⁻⁹ ergs for M = M (electron)

Photon E = hv v = frequency $= 6.6 \times 10^{-18} ergs$ if $v = 10^9 Hz$ Detice 10^9 (and above the set in 4 and)

Ratio ~ 10^9 (and photon gets there in 4 yrs)

100 M watt transmitter - 1 yr $$40 \times 10^{6}$

Spacecraft to nearest star $\sim 5×10^{16} (some recent analysis questions this conclusion)

Why Consider Travel?

Reasons for Interstellar Travel

Reasons:

- 1. Communication if searches fail
- 2. Exploration of other planetary systems

Planetary Science

Exobiology (many bacterial planets)

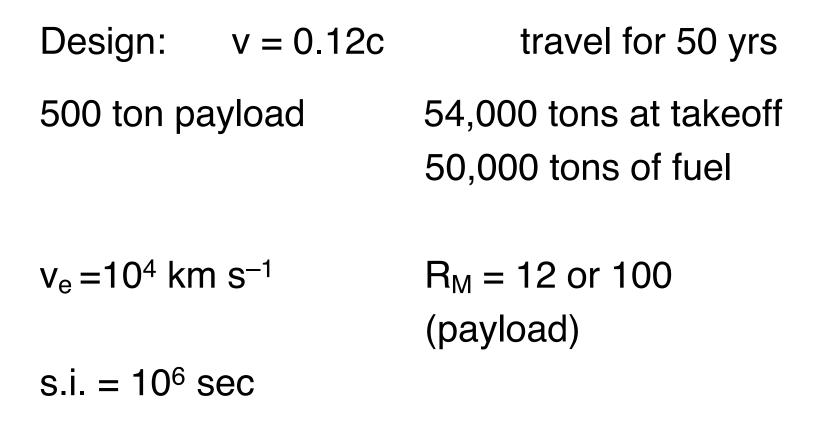
$N_{\ell} = R_{\star} f_{p} n_{e} f_{\ell} L_{\ell}$ $L_{\ell} > 3 \times 10^{9}$ yr on Earth					
	Birth Rate	<u>L</u>	<u>N</u> e		
Happy Feller	50	3 × 10 ⁹	1.5 × 10 ¹¹		
Angela Angst	7.5 × 10 ⁻⁴	3 × 10 ⁹	2.3×10^{6}		
Average Guy	2.2	3 × 10 ⁹	6.7 × 10 ⁹		

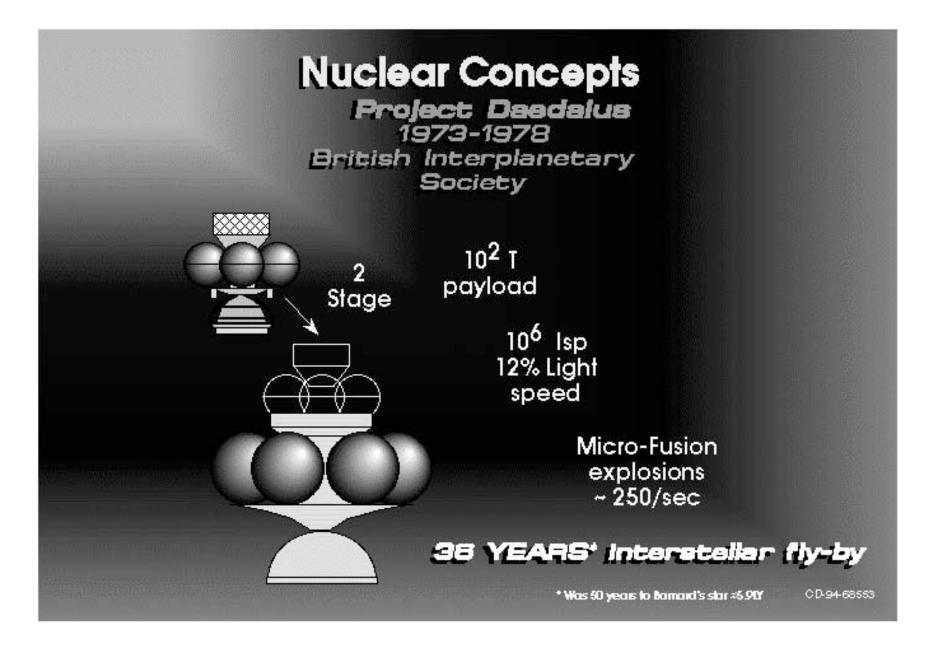
Other Reasons

- Colonization
 - Species Immortality
 - Could survive the end of life on Earth
- The explorer's urge
 - "to boldly go ..."

Pattern of Solar System Exploration

- 1. Ground-based observations (telescopes)
- 2. Fly-by missions, Radio back results
- 3. Orbit or land, Radio back results
- 4. Mission with human beings Return to Earth (Moon Only)
- 5. Permanent Base (Not Yet)

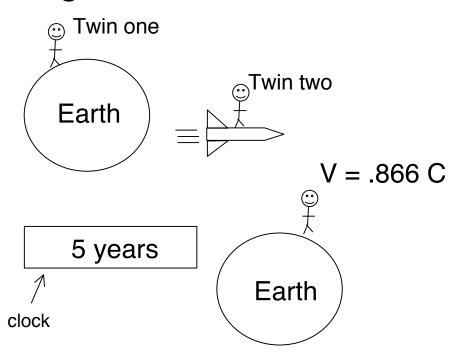

Expect similar for Interstellar <u>Except</u> No Round Trips Distances to Stars ~ Light Years Time = $\frac{\text{Distance (Ly)}}{\text{Speed (Ly/y)}} \simeq \frac{4 \text{ Ly}}{0.1 \text{ c}} = 40 \text{ yr}$

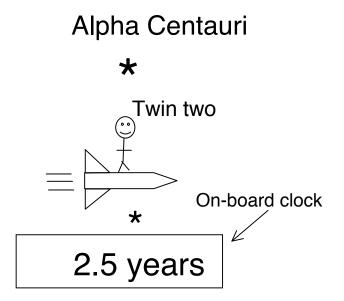

Round trip = 80 y

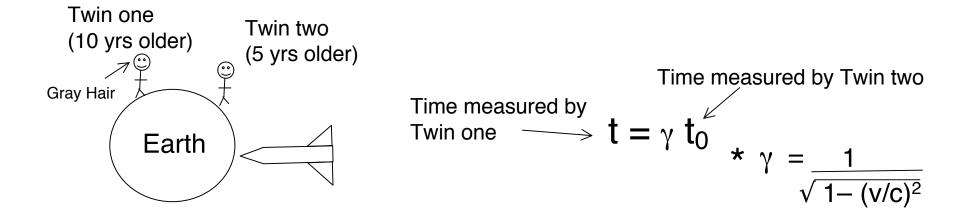
Project Daedalus

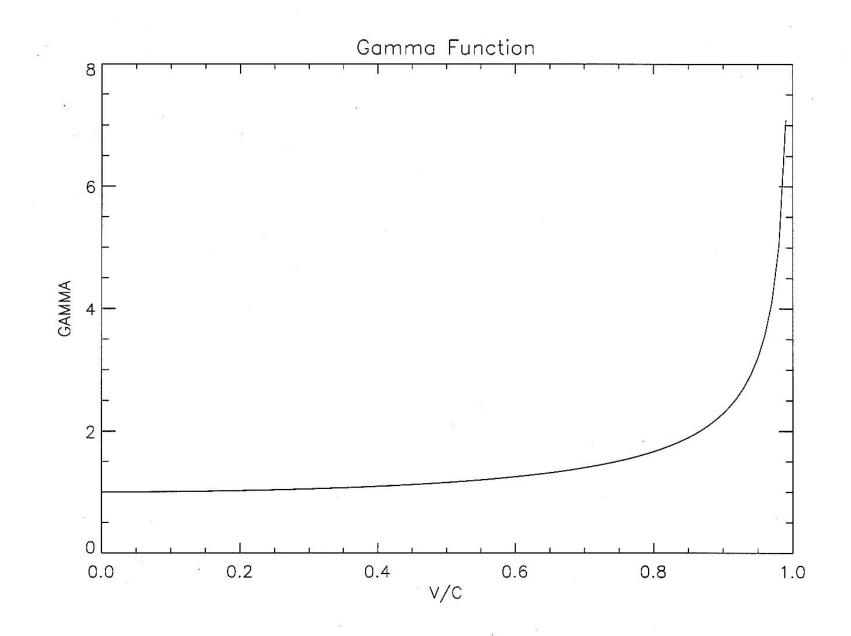
Design study for Fly-by Barnard's Star 6 ly away

Inertial confinement fusion (Ignite pellets of hydrogen w/lasers, particles) Terrestrial fusion: ${}^{2}H + {}^{3}H \longrightarrow {}^{4}He + n$ deuterium tritium causes problems Daedalus: ${}^{2}H + {}^{3}He \longrightarrow {}^{4}He + p$ $\Delta E = 4 \times 10^{-3} \text{ mc}^{2}$ Problem: ${}^{3}He \text{ rare } \Rightarrow \text{ Mine Jupiter?}$






Faster Travel?


- If we could travel close to speed of light
- Time Slows down
- Could travel more light years than years on the space ship clock
- Though not on the clock on the home planet

e.g. Twin Paradox

HOW CAN WE COMMUNICATE?

Time as Measured by Spacecraft Crew (years)	Time as Measured on Earth (years)	Greatest Distance Reached (light years)	Farthest Object Reached
1	1	0.06	Comets
10	24	9	Sirius
20	270	140	Hyades
30	3100	1,500	Orion Nebula
40	36,000	17,500	Globular cluster
50	420,000	170,000	Large Magellanic Cloud
60	5,000,000	2 million	Andromeda galaxy

TABLE 18.2 Round-Trip Times for Journeys at an Acceleration of 1 g^{*}

^{*} Following an example given by Sebastian von Hoerner, we imagine a spacecraft that accelerates at 1 g; that is, the force of acceleration or deceleration equals the force of gravity at the Earth's surface. After one year, such a spacecraft would be moving at a velocity very close to the speed of light.

Problems with fast travel

• Mass ratio (R_M) increases rapidly with v

 $-M = M_o \gamma$

- at v = 0.99c, best possible fuel: $R_M = 14$
- You have to take fuel to slow down
 - Fuel is payload on the way out

• $R_M = 14 \times 14 = 196$

• To return you need all this fuel as payload

− R_M = 196 x 196 ~ 40,000

• And you need antimatter-matter for $R_M = 14$

Rocket Limitation

Frepellant Wass to send one canister past Centauri Cluster within 900 years

Chemical	Fission	Fusion	lon/Antimatter
(500 sec)	(5,000 sec)	(10,000 sec)	(50,000 sec)
≂ 10 ¹³⁷ kg	≂ 10 ¹⁷ kg	≂ 10 ¹¹ kg	≂10 ⁵ kg
	A BILLION	A THOUSAN	ND TEN
Not enough moss in universe			-

Conclusion: we need a Propulsion Breakthrough ; NO PROPELLANT I

OD-94-68483

No Propellant?

- Bussard RamJet
 - Scoop up fuel as you go
 - Problems
 - Very diffuse (need huge scoop)
 - Hydrogen is low-grade fuel
 - You want rare ²H + ³He

Future Fantasies?

Consider now some things that are outside physics as we know it, but **might** be possible.

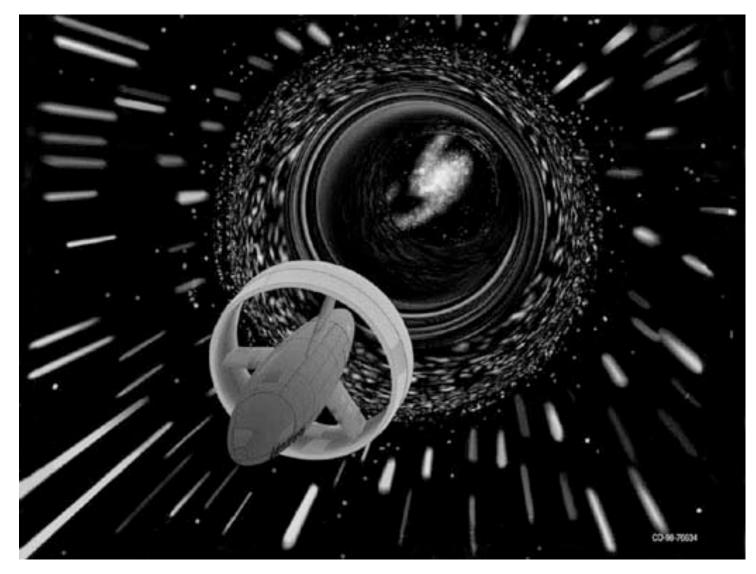
<u>Wormholes</u>

General relativity: A. Einstein

Matter warps space-time This warp is gravity

e.g. Black holes pinch off a piece of the Universe - even light cannot escape

Wormholes


Unlikely to form when a star collapses

If it forms, it is unstable

Traveler probably cannot pass through

Loophole - stabilize it somehow? Exotic Matter?

View entering a wormhole artist's conception

Warp Drives

Faster than light travel?

Not possible for ordinary matter, physics

 $M = \gamma M_0 \Rightarrow M \Rightarrow \infty as v \Rightarrow c$

Loophole: c is a speed limit for motion <u>in</u> space-time not <u>of</u> space-time

e.g. The space-time of the universe expanded faster than c during <u>very</u> early <u>inflationary</u> expansion

The Universe now seems to have a lot of "dark energy"

Source unknown

Acts like antigravity on <u>large</u> scales

Could we ever control this?

Alcubierre Warp

~ 1994 Miguel Alcubierre suggested use of "exotic matter" to surf a space-time distortion

Contract space in front, expand behind

Does exotic matter (negative mass) exist? Can we control it? Energy requirements

Originally thought to exceed that available in entire universe

Later calculations are less extreme

Back to Reality

- Hard to decide if very advanced civilizations might develop such schemes
- Use only laws of physics as constraint apply to all civilizations, no matter how advanced their technology

Colonization

Assume Daedalus technology (v = 0.1 c)

$$t = \frac{d_{\star}}{v} \sim \frac{4 \text{ ly}}{0.1} = 40 \text{ yrs}$$

Multi-generational travel (space colony + propulsion)

How long to colonize galaxy?

Colonization

With "reasonable" assumption,

 $t_{colonization} << t_{Galaxy}$

How likely?

How many civilizations ever developed? (Time available: $10 \times 10^9 - 5 \times 10^9 \simeq 5 \times 10^9$)

Colonization

Birthrate \times age of Galaxy = N_(ever)

Happy Feller50 \times 5×10^9 = 2.5×10^{11} Angela Angst 7.5×10^{-8} \times 5×10^9 =375Average Guy0.93 \times 5×10^9 = 4.7×10^9

If even <u>one</u> of these decided to colonize, it should already have happened!

Possible consequences:

- 1. Galactic community
- 2. Solar-system has been visited
- 3. Solar-system being monitored
- 4. Solar-system leakage radiation detected?

Hart Hypothesis

Fact: There are no intelligent beings from outer Space on the Earth now.

Only 5 possible explanations:

- 1. Space travel is not feasible
- 2. Civilizations <u>chose</u> not to colonize
- 3. Not enough time to colonize galaxy
- 4. The Earth was visited but they did not colonize
- 5. There are no other advanced civilizations

"Answers" to the Hart Hypothesis

- 1. Colonization may be much slower 10^6 yr regeneration $\rightarrow t_{colon} > 10^{10}$ yrs
- 2. Nomads/explorers make trips, not colonists!
- 3. May be harder to adapt to life on a new planet than "we" think.We need 20 essential amino acids
- Optimist's time scale for colonization > t for biological evolution
 Maybe >>
- 5. Possible development of "ecological ethic" Do not interfere
- 6. They <u>are</u> here! UFO's