Evaluating your Drake Equation

Basic Ideas

- Number of Civilizations in our Galaxy
 - Product of rate of emergence and L
 - Running product gives rate for each step
 - Until L, we have rates
 - Through f_c, we get "communicable" civilizations
 - Multiplying by L gives the number (N)
 - Assumes "steady state" between birth and death of civilizations

Drake Equation:

$$N = R * f_p n_e f_\ell f_i f_c L$$

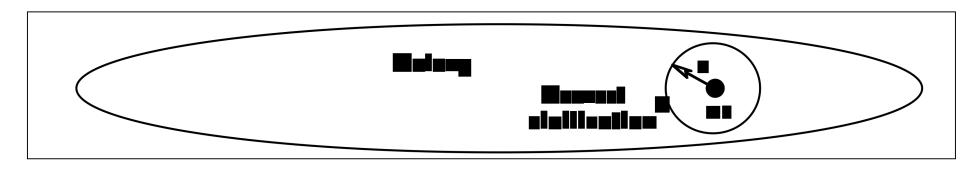
N = number of communicable civilizations in our galaxy

R = Rate at which stars form

f_p = Fraction of stars which have planetary systems

n_e = Number of planets, per planetary system, which are suitable for life

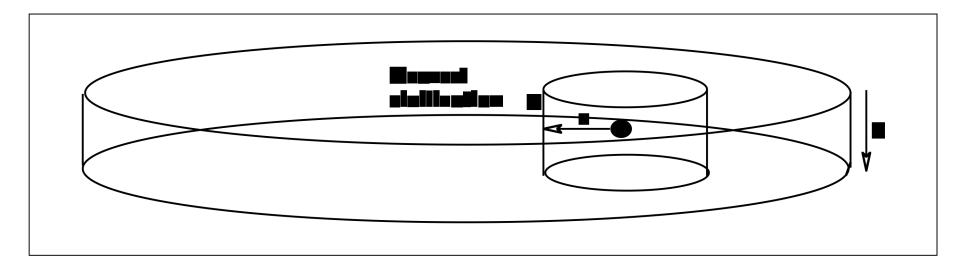
 f_{ℓ} = Fraction of life bearing planets where intelligence develops


f_c = Fraction of planets with intelligent life which develop a technological phase during which there is a capacity for and interest in interstellar communication

L = Average of lifetime of communicable civilizations

r = Average distance to nearest civilization

Distance to Nearest Neighbor


1. Assume civilizations spread uniformly but randomly through galaxy

r = radius of imaginary sphere centered on us that touches nearest civilizaztion search vol ∝ r³

$$\Rightarrow r = \frac{10^4 \, \ell y}{N^{1/3}}$$

Distance to Nearest Neighbor

If N < 8000, r from previous formula is 500 ℓy About equal to thickness of Galaxy

Use cylinder for search vol $\propto r^2 h$

so
$$r = \frac{5 \times 10^4 \, \ell y}{N^{1/2}}$$

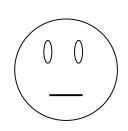
Happy Feller

	R	f_p	n _e	f_ℓ	f _i	f_{c}	L	N	r	
Estimate	50	1	1	1	1	1	5 × 10 ⁹	2.5×10^{11}	1.6 <i>ℓ</i> y	
Birthrate	50	50	50	50	50	50	^			

2.5 out of 4 stars

If N > 8000,
$$r = \frac{10^4 \text{ light years}}{N^{1/3}}$$
 If N <8000,
$$r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$$

Angela Angst


	R	f_p	n _e	f_ℓ	f _i	f _c	L	N	r
Estimate	5	0.1	0.1	0.01	0.01	0.01	100	5 × 10 ⁻⁶	
Birthrate	5	0.5	0.05	5 x 10 ⁻⁴	5 × 10 ⁻⁶	5 × 10 ⁻⁸			

Never two civilizations at same time

If N > 8000,
$$r = \frac{10^4 \text{ light years}}{N^{1/3}}$$

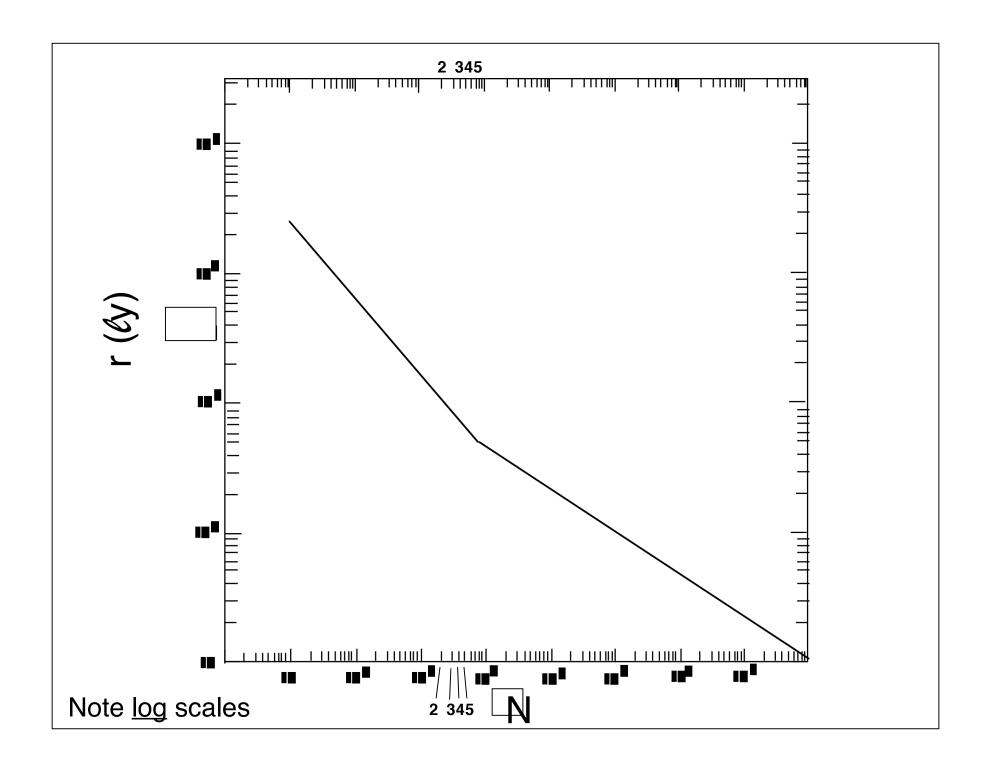
If N < 8000,
$$r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$$

Mr. Average Guy

	R	f_p	n _e	f_ℓ	f _i	f _c	L	N	r	
Estimate	10	0.5	0.89	0.5	0.7	0.6	1 × 10 ⁶	9.4 × 10 ⁵	100	
Birthrate	10	5	4.45	2.23	1.56	0.94		_		
								l		
								1 out of		
			4	× 10 ⁵ sta	rs					
If N	1 > 80	200	r =	104	light y	ears	\rightarrow 10 × 10 ⁵ = 10 ⁶			
11 1	V / OC	,		-	$N^{1/3}$					
I.C. N.I.	. 000	20		5 ×	10 ⁴ lig	ht yea	rs			

 $N^{1/2}$

If N < 8000,


Evaluating YOUR Drake Equation

- Almost no answers are wrong
 - It must be possible for us to exist
 - N must be no greater than the number of stars in the Galaxy
 - May imply limit on L
- Ways to evaluate:
 - Plug into equations
 - Use calculator on web
 - http://www.as.utexas.edu/astronomy/education/drake/dra ke.html
 - Ask us for help

Your Drake Equation

	R	f_p	n _e	f_ℓ	f _i	f_{c}	L	N	r
Estimate									
Birthrate									

If N > 8000,
$$r = \frac{10^4 \text{ light years}}{N^{1/3}}$$
 If N < 8000,
$$r = \frac{5 \times 10^4 \text{ light years}}{N^{1/2}}$$

Points to bear in mind

- r is based on assuming spread uniformly
 - Could be less in closer to center of MW
- r is based on averages
 - Could be closer but unlikely
- r is less uncertain than N
- Since signals travel at c, time = distance in ly
- If L < 2r, no two way messages