12/1/04
Final - Saturday, December 11, 7:00 PM
Painter Hall - 4.42 (NOT WELCH)
Review sheet for material since exam 4, will be posted this week.

Pic of the day: Saturn's moon, Dione

Extra credit sky-watch reports are due by 5 PM on Monday, December 6 (or earlier!!).

Office hours during finals week:
Dunham: M-F 3-5 PM (3-4 Wednesday)
Wheeler: M-F 2-3 PM (or by appointment)
Special Office Hours: RLM 15.216B
Tuesday 4-5 PM
Thursday 5-6 PM

Hyperspace Perspectives (reflected in cubism?)
2 D creature - another 2 D creature sees the front

From 3D, we see front, back and inside simultaneously
In our 3D space we see the front of another 3D creature
A being living in a 4D hyperspace would see all of our surface, front and back, and our insides, all at once!

A 3D creature passing through a 2D Universe would start as a point, grow to a finite area, then decrease to a point and disappear.

A 3D creature passing through our 3D Universe would start as a point, grow to a finite volume, then decrease to a point and disappear.

String Theory

Best current candidate for a quantum gravity "theory of everything."
Particles like e-, p, n are not "points" but strings, loops that vibrate in different modes

The different modes of vibrations give all the well-known particles and more

One particle

A different particle

Same fundamental loop of string
From Brian Green - The Elegant Universe

To be mathematically self-consistent
Space in which strings vibrate has 10 space dimensions + time
First notions:
3 big space dimensions + time

Other 7 dimensions "wrapped up" on "string length scale," not known precisely, somewhat larger than the Planck scale, but very tiny so we cannot easily "see."

Rubber band - 1D, paper - 2D (wrap rubber band in paper, make 1D, 0D spaces still containing the rubber band)

Fig 12.3

- from a distance
looks 0D,
a point

To be mathematically self-consistent
Space in which strings vibrate has 10 space dimensions + time
First notions:
3 big space dimensions + time

Other 7 dimensions "wrapped up" on "string length scale," not known precisely, somewhat larger than the Planck scale, but very tiny so we cannot easily "see."

Rubber band - 1D paper - 2D (wrap rubber band in paper)

Schematic illustrations of how tiny "wrapped up" extra dimensions could be associated with our 3D space - something like an embedding diagram of the higher dimensional space, so our 3D space is reduced to 2 D and the higher dimensional wrapped spaces are reduced to 3D.

From Brian Green - The Elegant Universe

At each point in the 2D space (not just at the intersections of grid lines), there is a little 1D loop of one wrapped up extra dimension.

